研究生: |
王乃娟 Wang, Nai-Jyuan |
---|---|
論文名稱: |
植物非專一性脂質傳輸蛋白質資料庫之建立與分析 Construction and analysis of a plant non-specific lipid transfer protein database (LTPDB) |
指導教授: |
呂平江
Lyu, Ping-Chiang |
口試委員: |
黃鎮剛
楊立威 |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 75 |
中文關鍵詞: | 植物脂質傳輸蛋白 |
外文關鍵詞: | Lipid transfer protein |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
植物非專一性脂質運輸蛋白 (nsLTPs) 是以α螺旋為主體結構的小分子量鹼性蛋白。在序列上由八個半胱胺酸組成,而這八個半胱胺酸會形成四對雙硫鍵。在過去的研究中主要是依照分子量將此蛋白分為二大類,nsLTP1是9kDa而nsLTP2則是7kDa。但有越來越多的研究發現既不屬於nsLTP1也不屬於nsLTP2的nsLTPs。在沒有一套完善分類方法的情況下,生物學家很難比較nsLTP之間有哪些差異。為了更加了解nsLTP,我們建立了一套基於序列相似性的分類方法。此外,我們發現在過去的研究中,八個半胱胺酸是目前用來判別植物非專一性脂質運輸蛋白的最佳方法,但目前還無法知道在序列上有哪些重要的結構模組 (motif) 會影響植物非專一性脂質運輸蛋白。目前在生物資訊及計算生物學領域中,多重序列比對 (multiple sequence alignment; MSA) 在發掘基因體或蛋白質序列的生物意義上是很有用的工具,在此論文中,我們運用MSA自 Type I 和 Type II 這二類植物非專一性脂質運輸蛋白中分析出各自的的 Prosite signature。比較此 patterns 與我們實驗室早先的實驗結果,發現利用分子生物學點突變的技術所找到對結構或功能有所影響的突變株,該突變位置的胺基酸在我們的 Prosite signature 中出現機率都高於70%,佐證了此 pattern 對結構與功能的重要性。最後,由於目前尚未有專屬於植物非專一性脂質運輸蛋白的資料庫,我們將所收集到的、已有GI number的植物專一性脂質運輸蛋白的蛋白質序列加以篩選、分析,利用 PHP 程式語言、MYSQL 資料庫系統建立了一個線上資訊服務平台,及一個根據我們的分類法來預測是否為 Type I 和 Type II 的 LTProsite 預測平台,網址:http://140.114.98.10/ltp/
Plant non-specific lipid transfer proteins (nsLTPs) are small and basic proteins. Recently, nsLTPs have been reported involved in many physiological functions such as mediating phospholipid transfer, participating in plant defense activity against bacterial and fungal pathogens, and enhancing cell wall extension in tobacco. However, the lipid transfer mechanism of nsLTPs is still unclear, and comprehensive information of nsLTPs is difficult to obtain. In this study, we identified 595 nsLTPs from 121 different species and constructed an nsLTPs database — LTPDB — which comprises the sequence information, structures, relevant literatures, and biological data of all plant nsLTPs (http://140.114.98.10/ltp). Meanwhile, bioinformatics and statistics methods were implemented to develop a classification method for nsLTPs based on the patterns of the eight highly-conserved cysteine, and to suggest strict Prosite patterns for Type I and Type II nsLTPs. The Prosite pattern of Type I is C X2 V X5-7 C [V , L , I] X Y [L, A, V] X8-13 CC X G X12 D X [Q, K, R] X2 CXC X16-21 P X2 C X13-15C, and that of Type II is C X4 L X2 C X9-11 P [S , T] X2 CC X5 Q X2-4 C[L, F]C X2 [A , L , I] X [D , N] P X10-12 [K , R] X4-5 C X3-4 P X0-2 C. Moreover, we referred the Prosite patterns to the experimental mutagenesis data that previously established by our group, and found that the residues with higher conservation played an important role in the structural stability or lipid binding ability of nsLTPs. Taken together, this research has suggested potential residues that might be essential to modulate the structural and functional properties of plant nsLTPs. Finally, we developed a useful prediction tool for nsLTPs named LTProsite and hereby proposed some biologically important sites of the nsLTPs, which are described by using a new Prosite pattern that we defined.
References
1. Kader, J. C. (1996) Lipid transfer proteins in plant. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 627-654
2. Tai, S. P., and Kaplan, S. (1985) Phospholipid transfer proteins in microorganisms. Chem Phys Lipids 38, 41-50
3. Crain RC, Z. D. (1980) Two nonspecific phospholipids exchange proteins from beef liver. 1. Purification and characterization. Biochemistry 19, 1433-1439
4. Seedorf U., Scheek S., Engel T., Steif C., Hinz H.-J., Assmann G. (1994) "Structure-activity studies of human sterol carrier protein 2." J. Biol. Chem. 269:2613-2618
5. Stanley W.A., Filipp F.V., Kursula P., Schueller N., Erdmann R., Schliebs W., Sattler M., Wilmanns M. (2006) "Recognition of a functional peroxisome type 1 target by the dynamic import receptor Pex5p." Mol. Cell 24:653-663
6. Ostergaard, J., Vergnolle, C., Schoentgen, F. & Kader, J.C. (1993) Acyl-binding lipid-transfer proteins from rape seedlings, a novel category of proteins interacting with lipids. Biochem. Biophys. Acta 1170, 109-117
7. Kader, J. C. (1975). Proteins and the intracellular exchange of lipids: stimulation of phospholipid exchange between mitochondria and microsomal fractions by proteins isolate from potato tuber. Biochim Biophys Acta 380, 31-44
8. Jose-Estanyol, M. Gomis-Ruth, F. X. Puigdomenech, P. (2004). The eight-cysteine motif, a versatile structure in plant proteins. Plant Physiol Biochem. 42, 355-365
9. Jegou, S., Douliez, J. P., Molle, D.,Boivin, P., and Marion, D. (2000). Purification and structural characterization of LTP1 polypeptides from beer. J Agric Food Chem 48, 5023-5029
10. Lee, J. Y., Min, K., Cha, H., Shin, D. H., Hwang, K. Y., and Suh, S. W. (1998). Rice nonspecific lipid transfer protein: the 1.6 Å crystal structure in the unliganded state reveals a small hydrophobic cavity. J Mol Biol 276, 437-448
11. Douliez, J. P., Jegou, S., Pato, C., Larre, C., Molle, D., and Marion, D. (2001). Identification of a new form of lipid transfer protein (LTP1) in wheat seeds. J Agric Food Chem 49, 1805-1808
12. Shin, D. H., Lee, J. Y., Hwang, K. Y., Kim, K. K., and Suh, S. W. (1995). High-resolution crystal structure of the nonspecific lipid transfer protein from maize seedlings. Structure 3, 189-199
13. Tchang, F. This, P. Stiefel, V. Arondel, V. Morch, M. D. Pages, M. Puigdomenech, P. Grellet, F. Delseny, M. Bouillon, P. et al. (1988). Phospholipid transfer protein: full-length cDNA and amino acid sequence in maize. Amino acid sequence homologies between plant phospholipid transfer proteins. J Biol Chem. 263, 16849-16855
14. Takishima, K. Watanabe, S. Yamada, M. Suga, T. Mamiya, G. (1988). Amino acid sequences of two nonspecific lipid-transfer proteins from germinated castor bean. Eur J Biochem. 177, 241-249
15. Bouillon, P. Drischel, C. Vergnolle, C. Duranton, H. Kader, J. C. (1987). The primary structure of spinach-leaf phospholipid-transfer protein. Eur J Biochem. 166, 387-391
16. Douliez, J. P., Michon, T., Elmorjani, K., and Marion, D. (2000). Structure, biological and technological functions of lipid transfer proteins and indolines, the major lipid binding proteins from cereal kernels. J Cereal Sci 32, 1-20
17. Lehmann, M. S., Pebay-Peyroula, E., Cohen-Addad, C., and Odani, S. (1989). Crystallographic data for soybean hydrophobic protein. J Mol Biol. 210, 235-236
18. Han, G. W., Lee, J. Y., Song, H. K., Chang, C., Min, K., Moon, J., Shin, D. H., Kopka, M. L., Sawaya, M. R., Yuan, H. S., Kim, T. D., Choe, J., Lim, D., Moon, H. J. & Suh, S. W. (2001). Structure basis of non-specific lipid binding in maize lipid-transfer protein complexes revealed by high-resolution x-ray crystallography. J. Mol. Biol. 308, 263-278.
19. Samuel, D., Liu, Y. J., Cheng, C. S., and Lyu, P. C. (2002). Solution structure of plant nonspecific lipid transfer protein-2 from rice (Oryza sativa). J Biol Chem. 277, 35267-35273
20. Pons, J. L., de Lamotte, F., Gautier, M. F., and Delsuc, M. A. (2003). Refined solution structure of a liganded type 2 wheat nonspecific lipid transfer protein. J Biol Chem. 278, 14249-14256
21. Lerche, M. H., Kragelund, B. B., Bech, L. M., and Poulsen, F. M. (1997). Barley lipid transfer protein complexed with palmitoyl CoA: the structure reveals a hydrophobic binding site that can expand to fit both large and small lipid-like ligands. Structure 5, 291-306
22. Lindorff-Larsen, K., and Winther, J. R. (2001). Surprisingly high stability of barley lipid transfer protein, LTP1, towards denaturant, heat and proteases. FEBS Lett. 488, 145-148
23. Hendriks T, Meijer EA, Thoma S, Kader J-C & De Vries SC (1994) The carrot extracellular lipid transfer protein EP2: quantitative aspects with respect to its putative role in cutin synthesis. In: Coruzzi G & Puigdomènech P (Eds) Plant Molecular Biology, Molecular Genetic Analysis of Plant Development and Metabolism, NATO ASI Series, Vol 81 (pp 85-94). Springer-Verlag, New York
24. Garcia-Olmedo, F. Molina, A. Segura, A. Moreno, M. (1995). The defensive role of nonspecific lipid-transfer proteins in plants. 3, 72-74
25. Kimberly D. Cameron, Mark A. Teece, and Lawrence B. Smart. (2006). Increased Accumulation of Cuticular Wax and Expression of Lipid Transfer Protein in Response to Periodic Drying Events in Leaves of Tree Tobacco. Plant Physiology. 140, 176-183
26. Qiang Liu, Yong Zhang and Shouyi Chen. (2000). Plant protein kinase genes induced by drought, high salt and cold stresses. Chinese Science Bulletin. 45, 1153-1157
27. Lindorff-Larsen, K., and Winther, J. R. (2001) Surprisingly high stability of barley lipid transfer protein, LTP1, towards denaturant, heat and proteases. FEBS Lett 488, 145-148
28. Sancho, A. I., Rigby, N. M., Zuidmeer, L., Asero, R., Mistrello, G., Amato, S., Gonzalez-Mancebo, E., Fernandez-Rivas, M., van Ree, R., and Mills, E. N. (2005) The effect of thermal processing on the IgE reactivity of the non-specific lipid transfer protein from apple, Mal d 3. Allergy 60, 1262-1268
29. Sorensen, S. B., Bech, L.M., Muldbjerg, M., Beenfeldt, T. & Breddam, K. (1993) Barley lipid transfer protein 1 is involved in beer foam formation. MBAA Technical Q. 30, 136-145
30. Hoffmann-Sommergruber, K. (2000) Plant allergens and pathogenesis-related proteins. What do they have in common? Int Arch Allergy Immunol 122, 155-166
31. Nieuwland, J., Feron, R., Huisman, B. A., Fasolino, A., Hilbers, C. W., Derksen, J., and Mariani, C. (2005) Lipid transfer proteins enhance cell wall extension in tobacco. Plant Cell 17, 2009-2019
32. Boutrot, F., et al. 2008. Genome-wide analysis of the rice and Arabidopsis non-specific lipid transfer protein (nsLtp) gene families and identification of wheat nsLtp genes by EST data mining. BMC Genomics 9: 86.
33. Wanfei Liu, Dawei Huang, Kan Liu, Songnian Hu, Jun Yu, Gang Gao, and Shuhui Song. (2010) Discovery, Identification and Comparative Analysis of Non-Specific Lipid Transfer Protein (nsLtp) Family in Solanaceae Genomics Proteomics Bioinformatics. 8(4): 229-237.
34. Birney E, Clamp M, Durbin R (2004) GeneWise and Genomewise. Genome Res 14: 988–995.
35. Monika M. Edstam, Lenita Viitanen, Tiina A. Salminen and Johan Edqvist. (2011) Evolutionary History of the Non-Specific Lipid Transfer Proteins. Molecular Plant.
36. Durbin, Richard; Sean R. Eddy, Anders Krogh, Graeme Mitchison (1998). Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press. ISBN 0-521-62971-3.
37. D.W. Mount (2004). "Bioinformatics: Sequence and Genome Analysis”.
38. E. Quevillon, V. Silventoinen, S. Pillai, N. Harte, N. Mulder, R. Apweiler and R. Lopez. (2005) InterProScan: protein domains identifier. Nucleic Acids Research. 33: 116-120.
39. Murtagh F (1984). "Complexities of Hierarchic Clustering Algorithms: the state of the art". Computational Statistics Quarterly 1: 101-113.
40. Richard Durbin, Sean R. Eddy, Anders Krogh, Graeme Mitchison (1999). Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press.
41. Bateman A, Birney E, Cerruti L, Durbin R, Etwiller L, Eddy SR, Griffiths-Jones S, Howe KL, Marshall M, Sonnhammer EL: The Pfam protein families database. Nucleic Acids Res 2002, 30:276-80
42. Catherine Bru, Emmanuel Courcelle, Sébastien Carrère, Yoann Beausse, Sandrine Dalmar, and Daniel Kahn (2005) The ProDom database of protein domain families: more emphasis on 3D. Nucleic Acids Res. 33: D212-D215
43. Letunic I, Doerks T, Bork P. SMART 6: recent updates and new developments. (2008) Nucleic Acids Res; doi:10.1093/nar/gkn808
44. Haft DH, Selengut JD, and White O. (2003) The TIGRFAMs database of protein families. Nucleic Acids Res.; 31(1):371-3.
45. Bairoch A. (2000) The ENZYME database in 2000 Nucleic Acids Res 28:304-305.
46. Bateman A, Birney E, Cerruti L, Durbin R, Etwiller L, Eddy SR, Griffiths-Jones S, Howe KL, Marshall M, Sonnhammer EL: The Pfam protein families database. Nucleic Acids Res 2002, 30:276-80
47. Divoli, A. & Attwood, T.K. (2005) "Text-mining challenges for protein family database annotation.”ISMB 2005: 13th Int. Conference on Intelligent Systems for Molecular Biology. Detroit, USA.
48. Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD (2003). "Multiple sequence alignment with the Clustal series of programs". Nucleic Acids Res 31 (13): 3497–3500.
49. Gasteiger E., Gattiker A., Hoogland C., Ivanyi I., Appel R.D., Bairoch A. ExPASy: the proteomics server for in-depth protein knowledge and analysis Nucleic Acids Res. 31:3784-3788(2003).
50. Sigrist CJA, Cerutti L, de Castro E, Langendijk-Genevaux PS, Bulliard V, Bairoch A, Hulo N.PROSITE, a protein domain database for functional characterization and annotation.Nucleic Acids Res. 38(Database issue)161-6 (2010).
51. Sigrist C.J.A., Cerutti L., Hulo N., Gattiker A., Falquet L., Pagni M., Bairoch A., Bucher P. ROSITE: a documented database using patterns and profiles as motif descriptors.Brief Bioinform. 3:265-274(2002).
52. De Castro E., Sigrist C.J.A., Gattiker A., Bulliard V., Langendijk-Genevaux P.S., Gasteiger E., Bairoch A., Hulo N. canProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins.Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W362-5.
53. Sigrist C.J.A., De Castro E., Langendijk-Genevaux P.S., Le Saux V., Bairoch A., Hulo N. ProRule: a new database containing functional and structural information on PROSITE profiles. Bioinformatics. 2005 Nov 1;21(21):4060-6. Epub 2005 Aug 9.
54. Bairoch A. (2000) The ENZYME database in 2000 Nucleic Acids Res 28:304-305.
55. Arnold K., Bordoli L., Kopp J., and Schwede T. (2006). The SWISS-MODEL Workspace: A web-based environment for protein structure homology modelling. Bioinformatics, 22,195-201.
56. Kiefer F, Arnold K, Künzli M, Bordoli L, Schwede T (2009). The SWISS-MODEL Repository and associated resources. Nucleic Acids Research. 37, D387-D392.
57. Peitsch, M. C. (1995) Protein modeling by E-mail Bio/Technology 13: 658-660.
58. Emmanuel Boutet, Damien Lieberherr, Michael Tognolli, Michel Schneider and Amos Bairoch. (2007) UniProtKB/Swiss-Prot-The Manually Annotated Section of the UniProt KnowledgeBase. Methods in Molecular Biology. Volume 406, 89-112
59. Gasteiger E., Hoogland C., Gattiker A., Duvaud S., Wilkins M.R., Appel R.D., Bairoch A.; (2005) Protein Identification and Analysis Tools on the ExPASy Server;(In) John M. Walker (ed): The Proteomics Protocols Handbook, Humana Press. 571-607
60. Bjellqvist, B., Basse, B., Olsen, E. and Celis, J.E. Reference points for comparisons of two-dimensional maps of proteins from different human cell types defined in a pH scale where isoelectric points correlate with polypeptide compositions. Electrophoresis 1994, 15, 529-539.
61. Henrik Nielsen, Jacob Engelbrecht, Søren Brunak and Gunnar von Heijne. (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Engineering, 10:1-6, 1997.
62. Jannick Dyrløv Bendtsen, Henrik Nielsen, Gunnar von Heijne and Søren Brunak. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol., 340:783-795, 2004.
63. Berman, H.M., The Protein Data Bank: a historical perspective. 2008. Acta Crystallogr A. 64(Pt 1): p. 88-95.
64. Székely, G. J. and Rizzo, M. L. (2005) Hierarchical clustering via Joint Between-Within Distances: Extending Ward's Minimum Variance Method, Journal of Classification 22, 151-183.
65. Fernández, Alberto; Gómez, Sergio (2008). "Solving Non-uniqueness in Agglomerative Hierarchical Clustering Using Multidendrograms". Journal of Classification 25: 43–65.
66. Hamerly, G. and Elkan, C. (2002). "Alternatives to the k-means algorithm that find better clusterings". Proceedings of the eleventh international conference on Information and knowledge management (CIKM).
67. “Intro to SOM by Teuvo Kohonen". SOM Toolbox. http://www.cis.hut.fi/projects/somtoolbox/theory/somalgorithm.shtml. Retrieved 2006-06-18.
68. M. A. T. Figueiredo and A. K. Jain (2002), "Unsupervised Learning of Finite Mixture Models", IEEE Transactions on Pattern Analysis and Machine Intelligence 24: 381—396
69. M.J.L. de Hoon, S. Imoto, J. Nolan and S. Miyano (2004). Open source clustering software. Bioinformatics, 20(9), 1453-1454
70. Sokal R and Michener C (1958). "A statistical method for evaluating systematic relationships". University of Kansas Science Bulletin 38: 1409-1438.
71. Murtagh F (1984). "Complexities of Hierarchic Clustering Algorithms: the state of the art". Computational Statistics Quarterly 1: 101-113.
72. Naruya Saitou and Masatoshi Nei. (1987) The Neighbor-joining Method: A New Method for Reconstructing Phylogenetic Trees. Mol. Biol. Evol. 4(4):406-425.
73. GM Morris. (1996) AutoDock User Guide.
74. Tamura K, Dudley J, Nei M & Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24: 1596-1599.
75. Huson, Daniel H.; Daniel C. Richter, Christian Rausch, Tobias Dezulian, Markus Franz, and Regula Rupp (2007). "Dendroscope: An interactive viewer for large phylogenetic trees". BMC Bioinformatics 8:460: 460.