研究生: |
黃信瑀 Huang, Hsin-Yu |
---|---|
論文名稱: |
三維磊晶矽微加工製程開發及其於光學微致動器之應用 Development of 3D Epi-micromachining for Micro Optical Actuator |
指導教授: |
方維倫
Fang, Weileun |
口試委員: |
邱一
Chiu, Yi 徐文祥 Hsu, Wen-Syang 吳名清 Wu, Mingching 林弘毅 Lin, Hung-Yi 陳榮順 Chen, Rong-Shun 方維倫 Fang, Weileun |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2012 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 142 |
中文關鍵詞: | 三維磊晶矽微加工 、工字形肋補強 、磊晶回填肋補強 、微掃瞄面鏡 、靜磁力驅動 、硬磁薄膜 、垂直梳狀致動器 、光伏效應 、光致動器 |
外文關鍵詞: | 3D Epi-micromachining, I-section rib-reinforcement, epi-Si refill rib-reinforcement, Micro scanning mirror, Magnetostatic actuation, permanent magnet film, vertical comb-drive actuator, photovoltaic effect, optical actuator |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以開發三維磊晶矽微加工製程出發,提出工字形肋與磊晶回填肋補強等三維磊晶矽結構,應用於製作微掃瞄面鏡之元件結構與剛性補強,其中工字形肋補強的特色為整合電化學蝕刻停止與深式反應性離子蝕刻等微加工技術,仿造出巨觀世界常使用的工字樑;而磊晶回填肋補強的特色為利用磊晶矽孔道回填與電化學蝕刻停止等技術,可突破晶格面的限制,製作出非(111)面的磊晶矽結構。接著再整合鈷鎳錳磷硬磁材料當作靜磁力來源,實現一個具鏡面肋補強之靜磁式磊晶矽雙軸微掃瞄面鏡,其特色為:(1)運用三維磊晶矽製程技術,實現高剛性之單晶矽微掃瞄面鏡;(2)運用硬磁材料可免去額外組裝永久磁鐵於元件外部,僅需可提供時變磁場的螺線管,可有效地縮小封裝體積。量測結果可成功地以靜磁力驅動,並可投影出Lissajous掃瞄圖形,驗證了此元件應用於雷射投影顯示之可行性。最後回到磊晶矽晶圓本身具有pn接面的特性,提出光伏式pn接面垂直梳狀致動器,此乃運用光伏效應以雷射光入射元件而產生的靜電力使致動器運動,更進一步可同時以光伏效應與施加逆向偏壓增加其運動振幅。實驗結果可證實此致動概念的可行性,成功地以閃爍雷射光驅動元件於共振模態,並提出四種驅動方式:(1)以閃爍光驅動於共振;(2)閃爍光驅動外加直流逆向偏壓以增加角位移;(3)以逆向方波電壓驅動於共振;(4)逆向方波電壓驅動外加直流光伏電壓以增加角位移。此元件可直接將光能量轉換機械能,在微機電系統的光致動器中是一種嶄新的驅動模式。
This study reports a novel micro electrostatic vertical comb-drive actuator (VCA) driven by the photovoltaic effect that results from incident light. The vertical comb electrodes have a pn junction structure. The VCA with pn-combs can be driven by the photovoltaic effect. The combination of the photovoltaic effect and reverse bias can further increase the driving amplitude of the VCA. To demonstrate the feasibility of the proposed concept, the VCA with pn-combs was fabricated on an epitaxial silicon wafer and successfully driven resonantly by intensity-modulated laser light. The first torsional mode of a typical fabricated VCA is at 1.46 kHz. Moreover, the VCA driven using (1) optical driving, and (2) optical driving with DC reverse bias, were also demonstrated. This study also demonstrates the 2-axis epitaxial silicon scanner driven by the coil-less magnetostatic force using electroplated permanent magnet film. The present approach has four merits: (1) the process employs the cheap silicon wafer with epitaxial layer; and the electrochemical etching stop technique is used to precisely control the thickness of scanner; (2) the I-section rib-reinforced structure is implemented to provide high stiffness of the mirror plate; (3) the magnetostatic driving force on scanner is increased by electroplated permanent magnet film with slender patterns; (4) the size of packaged scanner is reduced since the assembled permanent magnets are not required.
[1] J. M. Bustillo, R. T. Howe, and R. S. Muller, “Surface micromachining for microelectromechanical systems,” Proceedings of IEEE, vol. 86, no. 8, pp. 1552-1574, 1998.
[2] G. T. A. Kovacs, N. I. Maluf, and K. E. Petersen, “Bulk micromachining of silicon,” Proceedings of IEEE, vol. 86, no. 8, pp. 1536-1551, 1998.
[3] http://www.analog.com/index.html, Analog Devices
[4] http://www.knowles.com/search/, Knowles
[5] http://www.hp.com/, Hewlett-Packard
[6] http://www.dlp.com : Texas Instruments-Digital Light Process
[7] L. J. Hornbeck, “Current status of the digital micromirror device (DMD) for projection television applications,” IEEE Int. Electron Devices Meeting, Washington, DC, Dec. 1993, pp. 381–384.
[8] L. J. Hornbeck, “Digital Light Processing: A New MEMS-Based Display Technology,” Technical Digest of the IEEJ 14th Sensor Symposium, Kawasaki, Japan, June 1996, pp. 297-304.
[9] M. R. Douglass, “Lifetime Estimates and Unique Failure Mechanisms of the Digital Micromirror Device (DMD™),” the 36th Annual International Reliability Physics Symposium, Reno, Nevada, March 1998, pp. 9-16.
[10] A. B. Sontheimer, “Digital Micromirror Device (DMD) Hinge Memory Lifetime Reliability Modeling,” 2002 IEEE International Reliability Physics Symposium, Dallas TX, April 2002, pp.118-121.
[11] P. F. Van Kessel, L. J. Hornbeck, R. E. Meier, and M. R. Douglass, “A MEMS-based projection display,” Proceeding of the IEEE, vol. 86, pp.1687-1704, 1998.
[12] A. D. Yalcinkaya, H. Urey, D. Brown, T. Montague, and R. Sprague, “Two-axis electromagnetic microscanner for high resolution displays,” Journal of Micromechanics and Microengineering, vol. 15, pp. 786-794, 2006.
[13] A. D. Yalcinkaya, O. Ergeneman, and H. Urey, “Polymer magnetic scanners for bar code applications,” Sensors and Actuators A, vol. 135, pp. 236-243, 2007.
[14] W. O. Davis, D. Brown, M. Helsel, R. Sprague, G. Gibson, A. Yalcinkaya, and H. Urey, “High-performance silicon scanning mirror for laser printing,” in Proc. SPIE- MOEMS and Miniaturized Systems VI, vol. 6466, San Jose, CA, January, 2007, pp. 64660D.
[15] H. Miyajima, N. Asaoka, T. Isokawa, M. Ogata, Y. Aoki, M. Imai, O. Fujimori, M. Katashiro, and K. Matsumoto, “A MEMS electromagnetic optical scanner for a commercial confocal laser scanning microscope,” Journal of Microelectromechanical Systems, vol. 12, pp. 243-251, 2003.
[16] C. Chong, K. Isamoto, and H. Toshiyoshi, “Optically modulated MEMS scanning endoscope,” Photonics Technology Letters, vol. 18, pp. 133-135, 2006.
[17] W. Jung, J. Zhang, L. Wang, P. Wilder-Smith, Z. Chen, D. T. McCormick, N. C. Tien, “Three-dimensional optical coherence tomography employing a 2-axis microelectromechanical scanning mirror,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 11, pp. 806-810, 2005.
[18] J. P. Siepmann and A. Rybaltowski, “Integrable ultra-compact, high-resolution, real-time MEMS LADAR for the individual soldier,” IEEE Military Communications Conference, vol. 5, Atlantic City, NJ, October, 2005, pp. 3073-3079.
[19] P.J. French, P.T.J. Gennissen and P.M. Sarro, "New silicon micromachining techniques for microsystems," Sensors and Actuators A, vol. 62, pp. 652-662, 1997.
[20] P. J. French, P. T. J Gennissen and P. M. Sarro, "Epi-micromachining," Journal of Microelectronics, vol. 28, pp. 449-464, 1997.
[21] J. G. Korvink and O. Paul, MEMS: a practical guide to design, analysis, and applications. 1st ED., Norwich, NY: William Andrew, 2006.
[22] H. Seidel, H. Csepregi, A. Heuberger and H. Baumgartner, "Anisotropic etching of crystalline silicon in alkaline solutions I & II," J. Electrochem. Soc., vol. 137, pp. 3612-3632, 1990.
[23] H.A.Waggener, "Electrochemically controlled thinning of silicon," Bell Syst. Tech. J., vol. 49, pp. 473-475, 1970.
[24] B. Kloek, S.D. Collins, N.F.de Rooij and R.L. Smith, "Study of electrochemical etch-stop for high precision thickness control of silicon membranes," IEEE Electron Dev., vol. 36, pp. 663-669, 1989.
[25] K. E. Petersen, "Silicon as a mechanical material," Proc. IEEE, vol. 70, pp. 42-57, 1982.
[26] O. N. Tufte and G. D. Long, "Silicon diffused element piezoresistive diaphragm," J. Appl. Phys., vol. 33, pp. 3322, 1962.
[27] H. Baltes, "CMOS as sensor technology," Sens. Actuators, vol. 37-38, pp. 51-56, 1993.
[28] P. M. Sarro and A. W. van Herwaarden, "Silicon cantilever beams fabricated by electrochemically controlled etching for sensor applications," J. Electrochem. Soc., vol. 133, pp. 1724-1729, 1986.
[29] A. W. van Herwaarden, D. C. van Duyn, B. W. van Oudheusden and P. M. Sarro, "Integrated thermal sensors," Sens. Actuators, vol. A21-23, pp. 621-630, 1989.
[30] Y. X. Li, P. J. French, P. M. Sarro and R. EWolffenbuttel, "Fabrication of a single crystalline capacitive lateral accelerometer using micromachining based on single step plasma etching," Proc. MEMS 95, Amsterdam, Jan-Feb, 1995, pp. 398-403.
[31] M. Bartek, P. T. J. Gennissen, P. M. Sarro, P. J. French and R. F. Wolffenbuttel, "An integrated silicon colour sensor using selective epitaxial growth," Sens. Actuators, vol. A41-42, pp.123-128, 1994.
[32] A. E. Kabir, G.W. Neudeck and J. A. Hancock, "Merged epitaxial lateral overgrowth (MELO) of silicon and its applications in fabricating single crystal silicon surface micromachining structures," Proc. Techcon 93, Atlanta, GA, USA, 1993.
[33] B. Diem, P. Rey, S. Renard, S. Viollet Bosson , H. Bono, F. Michel, M. T. Delaye and G. Delapierre, "SOl 'SIMOX' from bulk to surface micromachining, a new age for silicon sensors and actuators," Sens. Actuators, vol. A46-47, pp. 8-26, 1995.
[34] C. J. M. Eijkel, J. Branebjerg, M. Elwenspoek and F. C. M. van de Pol, "A new technology for micromachining of silicon: dopant selective HF anodic etching for the realization of low-doped monocrystalIine silicon structures," IEEE Electron. Dev. Lett., vol. 11, pp. 588-589, 1990.
[35] W. Lang, P. Steiner and H. Sandmaier, "Porous silicon: a novel material for microsystems," Sens. Actuators, vol. A51, pp. 31-36, 1995.
[36] T. E. Bell, P. T. J. Gennissen, D. de Munter and M. Kuhl, "Porous silicon as a sacrificial material", J. Micromech. Microeng., vol. 6, pp. 361-369, 1996.
[37] P. T. J. Gennissen, P. J. French, D. P. A. De Munter, T. E. Bell, H. Kaneko and P. M. Sarro, "Porous silicon micromachining techniques for acceleration fabrication," Proc. ESSDERC 95, Den Haag, The Netherlands, Sept., 1995, pp. 593-596.
[38] S. Armbruster, F. Schiifer, G. Lammel, H. Artmann, C. Schelling, H. Benzel, S. Finkbeiner, F. Larmer, P. Ruther and O. Paul, "A novel micromachining process for the fabrication of monocrystalline Si-membranes using porous silicon." TRANSDUCERS 2003, Boston, USA, vol. 1, June 9-12, 2003, pp. 246-249.
[39] K. Knese, S. Armbruster, H. Weber, M. Fischer, H. Benzel, M. Metz and H. Seidel, "Novel technology for capacitive pressure sensors with monocrystalline silicon membranes," IEEE MEMS 2009, Sorrento, Italy, 25-29 Jan., 2009, pp. 697-700.
[40] A. D. Yalcinkaya, H. Urey, D. Brown, T. Montague, and R. Sprague, “Two-axis electromagnetic microscanner for high resolution displays,” Journal of Micromechanics and Microengineering, vol. 15, pp. 786-794, 2006.
[41] L. O. S. Ferreira and S. Moehlecke, “A silicon micromechanical galvanometric scanner,” Sensors and Actuators A, vol. 73, pp. 252–260, 1999.
[42] H. J. Cho, J. Yan, S. T. Kowel, F. R. Beyette, Jr. and C. H. Ahn, "A scanning silicon micromirror using a bi-directionally movable magnetic microactuator," Proceedings of SPIE, Vol. 4178, pp. 106-115, 2000.
[43] H. J. Cho and C. H. Ahn, "A bi-directrional magnetic microactuator using electroplated permanent magnet arrays," J. Microelectromech. Syst, Vol. 11, No. 1, pp. 78-84, 2002.
[44] H. J. Cho and Chong H. Ahn, "A novel bi-directional magnetic microactuator using electroplated permanent magnet arrays with vertical anisotropy," IEEE MEMS 2000, Miyazaki, Japan, 2000, pp. 686-691.
[45] Y. Okano and Y. Hirabayashi, “Magnetically actuated micromirror and measurement system for motion characteristics using specular reflection” IEEE Journal on Selected Topic in Quantum Electronics, vol. 8, pp. 19-25, 2002.
[46] A. D. Yalcinkaya, H. Urey, and S. Holmstrom, “NiFe plated biaxial MEMS scanner for 2-D imaging,” IEEE Photonics Technology Letters, vol. 19, pp. 330-332, 2007.
[47] T.-L. Tang, C.-P. Hsu, W.-C. Chen and W. Fang, "Design and Implementation of Torque-Enhancement 2-axis Magnetostatic SOI Optical Scanner," Journal of Micromechanics and Microengineering, vol. 20, pp. 025020, 2010.
[48] R. A. Conant, J. T. Nee, K. Y. Lau, R. S. Muller, “Dynamic deformation of scanning mirrors” Optical MEMS, Kauai, HI, 2000, pp. 49-50.
[49] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics. New York: John Wiley and Sons., 1991.
[50] J. Hsieh, C.C. Chu, J. M.-L. Tsai, and W. Fang, “Using Extended BELST Process in Fabricating Vertical Comb Actuator for Optical Applications,” IEEE/LEOS International Conference on Optical MEMS, Lugano, Switzerland, August, 2002, pp. 133-134.
[51] O. Tsuboi, Y. Mizuno, N. Koma, H. Soneda, H. Okuda, S. Ueda, I. Sawaki, F. Yamagishi, "A rotational comb-driven micromirror with a large deflection angle and low drive voltage," IEEE MEMS 2002, Las Vegas, NV, Jan 2002, pp.532-535.
[52] O. Degani, E. Socher, A. Lipson, T. Lejtner, D.J. Setter, S. Kaldor, and Y. Nemirovsky, “Pull-in study of an electrostatic torsion microactuator,” Journal of Microelectromechanical Systems, 7, pp. 373-379, 1998.
[53] J. Buhler, J. Funk, J.G. Korvink, F.-P. Steiner, P.M. Sarro, and H. Baltes, “Electrostatic aluminum micromirrors using double-pass metallization,” Journal of Microelectromechanical Systems, 7, pp. 126-135, 1997.
[54] R. A. Conant, J. T. Nee, K. Y. Lau, R. S. Muller, “Dynamic deformation of scanning mirrors” Optical MEMS, Kauai, HI, 2000, pp. 49-50.
[55] C. H. Ji, M. Choi, S. C. Kim, S. H. Lee, S. H. Kim, Y. Yee and J. U. Bu, ” An electrostatic scanning mirror with diaphragm mirror plate and diamond-shaped reinforcement frame” Journal of Micromechanics and Microengineering, vol. 16, pp.1033-1039, 2006.
[56] C.-H. Ji, M. Choi, S.-C. Kim, K.-C. Song, J.-U. Bu, and H.-J. Nam,” Electromagnetic Two-Dimensional Scanner Using Radial Magnetic Field,” Journal of Microelectromechanical System, vol. 16, pp.989-996, 2007.
[57] J.-W. Cho, Y.-H. Park, Y.-C. Ko, B.-L. Lee, S.-J. Kang, S.-W. Chung, W.-K. Choi, Y.-C. Cho, S.-M. Chang, J.-H. Lee, and J. Sunu, “Electrostatic 1D microscanner with vertical combs for HD resolution display,” in Proc. SPIE- MOEMS and Miniaturized Systems VI, vol. 6466, pp. 64660B, 2007.
[58] S. T. Hsu, T. Klose, C. Drabe, and H. Schenk, “Fabrication and characterization of a dynamically flat high resolution micro-scanner,” Journal of Optics A: Pure and Applied Optics, pp.1-8, 2008.
[59] M. Wu and W. Fang, “Design and fabrication of MEMS devices using the integration of MUMPs, trench-refilled molding, DRIE and bulk silicon etching processes,” Journal of Micromechanics and Microengineering, vol. 15, no. 3, pp.535-542, 2005.
[60] M. Wu and W. Fang, “A molded surface-micromachining and bulk etching release (MOSBE) fabrication platform on (1 1 1) Si for MOEMS,” Journal of Micromechanics and Microengineering, vol. 16, no. 2, pp.260-265, 2006.
[61] M. Wu, S.-Y. Hsiao, C.-Y. Peng and W. Fang, "Development of tracking and focusing micro actuators for dual-stage optical pick-up head," Journal of Optics A: Pure and Applied Optics, vol. 8, pp. S323-S329, 2006.
[62] M. Wu, H. Y. Lin and W. Fang, “A poly-Si-based vertical comb-drive two-axis gimbaled scanner for optical applications,” IEEE Photonics Technology Letters, vol. 18, pp. 2111-2113, 2006.
[63] M. Wu, H. Y. Lin and W. Fang, “Design of novel sequential engagement vertical comb electrodes for analog micromirror,” IEEE Photonics Technology Letters, vol. 19, pp. 1586-1588, 2007.
[64] C. Lee, “Design and fabrication of Epitaxial Silicon Micromirror Devices,” Sensors and Actuators A, vol. 115, pp. 581-590, 2004.
[65] J. M. Gere and B. J. Goodno, Mechanics of Materials. 7th Ed.,Toronto, Canada: Cengage Learning, 2009.
[66] H.-Y. Lin and W. Fang, “A Rib-Reinforced Micro Torsional Mirror Driven by Electrostatic Torque Generators,” Sensors and Actuators A, vol. 105, pp.1-9, 2003.
[67] S. T. Ahn, and W. A. Tiller, “A staining technique for the study of two-dimensional dopant diffusion in silicon,” Journal of the Electrochemical Society, vol. 135, pp. 2370–2373, 1988.
[68] A. D. Yalcinkaya, H. Urey, D. Brown, T. Montague, and R. Sprague, “Two-axis Electromagnetic Microscanner for High Resolution Displays,” IEEE Journal of Microelectromechanical Systems, vol. 15, pp. 786-794, 2006.
[69] W. O. Davis, D. Brown, M. Helsel, R. Sprague, G. Gibson, A. Yalcinkaya, and H. Urey, “High-performance silicon scanning mirror for laser printing,” Proc. of SPIE, vol. 6466, 64660D, 2007.
[70] C. Ataman, H. Urey, and A. Wolter, “A Fourier transform spectrometer using resonant vertical comb actuators,” Journal of Micromechanics and Microengineering, vol. 16, pp. 2517-2523, 2006.
[71] A. D. Yalcinkaya, O. Ergeneman, and H. Urey, “Polymer magnetic scanners for bar code applications,” Sensors and Actuators A, vol. 135, pp. 236-243, 2007.
[72] T.-L. Tang, C.-P. Hsu, W.-C. Chen, and W. Fang, “Design and implementation of a torque-enhancement 2-axis magnetostatic SOI optical scanner,” Journal of Micromechanics and Microengineering, vol. 20, 025020, 2010.
[73] C. Lee, “Design and fabrication of Epitaxial Silicon Micromirror Devices,” Sensors and Actuators A, vol. 115, pp. 581-590, 2004.
[74] T. Mitsui, Y. Takahashi, and Y. Watanabe, “A 2-axis optical scanner driven nonresonantly by electromagnetic force for OCT imaging,” Journal of Micromechanics and Microengineering, vol. 16, pp. 2482-2487, 2006.
[75] A. D. Yalcinkaya, H. Urey, and S. Holmstrom, “NiFe Plated Biaxial MEMS Scanner for 2-D Imaging,” IEEE Photonics Technology Letters, vol. 19, pp. 330-332, 2007.
[76] H. J. Cho, J. Yan, S. T. Kowel, F. R. Beyette, Jr., and C. H. Ahn, “A scanning silicon micromirror using a bi-directionally movable magnetic microactuator,” Proc. of SPIE, vol. 4178, pp. 106-115, 2000.
[77] H. J. Cho and C. H. Ahn, "A bi-directrional magnetic microactuator using electroplated permanent magnet arrays," J. Microelectromech. Syst., Vol. 11, No. 1, pp. 78-84, 2002.
[78] H. J. Cho, S. Bhansali and C. H. Ahn, "Electroplated thick permanent magnet arrays with controlled direction of magnetization for MEMS application,” Journal of Appl. Phys., Vol. 87, No. 9, pp. 6340-6342, 2000.
[79] H. J. Cho and Chong H. Ahn, "A novel bi-directional magnetic microactuator using electroplated permanent magnet arrays with vertical anisotropy," MEMS 2000, Miyazaki, Japan, 2000, pp. 686-691.
[80] Y.-C. Ko, J.-W. Cho, Y.-K. Mun, H.-G. Jeong, W. K. Choi, J.-W. Kim, Y.-H. Park, J.-B. Yoo, J.-H. Lee, ”Eye-type scanning mirror with dual vertical combs for laser display,” Sensors and Actuators A: Physical, vol. 126, pp. 218-226, 2006.
[81] Y.-C. Ko, J.-H. Lee, J.-W. Cho, Y.-H. Park, J.-O Kim, Y.-C. Cho, S.-M. Chang, H.-G. Jeong, S.-J. Kang, S.-W. Chung, S.-H. Shin, J. Sunu, J.-B. Yoo, "Gimbaled 2D scanning mirror with vertical combs for laser display," Optical MEMS 2006, Big Sky, Montana, 21-24 Aug., 2006, pp. 104-105.
[82] A. G. Guy, Introduction to Materials Science. New York, NY: McGraw Hill, 1972.
[83] A. G. Guy, Essentials of materials science. New York, NY: McGraw Hill, 1976.
[84] L. C. Cullity, Introduction to Magnetic Materials. Reading, MA: Addison-Wesley, 1972.
[85] S. N. Talukdar and J. R. Bailey, “Hysteresis Models for System Studies,” IEEE Transaction on Power Apparatus and System, 95, pp. 1429-1434, 1976.
[86] H. Schenk, P. Dürr, D. Kunze, H. Lakner, and H. Kück, “A resonantly excited 2D-micro-scanning-mirror with large deflection,” Sensors and Actuators A, vol. 89, pp. 104–111, 2001.
[87] V. Milanović, S. Kwon, L. P. Lee, “High aspect ratio micromirrors with large static rotation and piston actuation,” IEEE Photonics Technology Letters, vol. 16, pp. 1891–1893, 2004.
[88] J. C. Tsai and M. C. Wu, “A high port-count wavelength-selective switch using a large scan-angle, high fill-factor, two axis MEMS scanner array,” IEEE Photonics Technology Letters, vol. 18, pp. 1439–1441, 2006.
[89] J. Hsieh, and W. Fang, “A novel microelectrostatic torsional actuator,” Sensors and Actuators A, vol. 79, pp. 64–70, 2000.
[90] R. A. Conant, J. T. Nee, K. Y. Lau, and R. S. Muller, “A flat high-frequency scanning micromirror,” IEEE Solid-State Sensor and Actuator Workshop Technical Digest, Hilton Head Island, SC, June 2–4, 2000, pp. 6–9, 2000.
[91] J. M.-L. Tsai, H.-Y. Chu, J. Hsieh, and W. Fang, “The BELST II process for a silicon high-aspect-ratio micromaching vertical comb actuator and its applications,” Journal of Micromechanics and Microengineering, vol. 14, pp. 235–241, 2004.
[92] J. Kim, D. Christensen, and L. Lin, “Micro vertical comb actuators by selective stiction process,” Sensors and Actuators A, vol. 127, pp. 248–254, 2006.
[93] K.-H. Jeong, and L. P. Lee, “A novel microfabrication of a self-aligned vertical comb drive on a single SOI wafer for optical MEMS applications,” Journal of Micromechanics and Microengineering, vol. 15, pp. 277–281, 2005.
[94] D. Hah, P. R. Patterson, H. D. Nguyen, H. Toshiyoshi, and M. C. Wu, “Theory and experiments of angular vertical comb-drive actuators for scanning micromirrors,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 10, pp. 505–513, 2004.
[95] H. Schenk, P. Dürr, T. Haase, D. Kunze, U. Sobe, H. Lakner, and H. Kück, “Large deflection micromechanical scanning mirrors for linear scans and pattern generation,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 6, pp. 715–722, 2000.
[96] N. M. Abu-Ageel, “Micro-machine electrostatic actuator, method and system employing same, and fabrication methods thereof,” Patent No.: US6757092 B2, Jun. 29, 2004.
[97] M. Tabib-Azar, “Optically controlled silicon microactuators,” Nanotechnology, vol. 1, pp. 81–92, 1990.
[98] Y. Yamauchi, A. Higo, K. Kakushima, H. Fujita, and H. Toshiyoshi, “Optically assisted electrostatic actuation mechanism,” IEEE/LEOS Int. Conf. on Optical MEMS and Their Applications (Optical MEMS 2004), Takamatsu, Japan, Aug. 22–26, 2004, pp. 164–165.
[99] Y. Yamauchi, A. Higo, K. Kakushima, H. Fujita, and H. Toshiyoshi, “A light-in light-out micro mirror device,” in Digest Tech. Papers Transducers‘05 Conference, Seoul, Korea, June 5–9, 2005, pp. 1175–1178.
[100] S. O. Kasap, Optoelectronics and photonics: principles and practices. 1st edition, Upper Saddle River, New Jersey: Prentice Hall, 2001.
[101] S. M. Sze, and K. K. Ng, Physics of semiconductor devices. 3rd edition, Hoboken, New Jersey: John Wiley & Sons, 2007.
[102] W. T. Lin, J. C. Chiou, and C. Tsou, “A self-aligned fabrication method of dual comb drive using multilayers SOI process for optical MEMS applications,” Microsystem Technologies, vol. 11, pp. 204–209, 2005.
[103] S. T. Ahn, and W. A. Tiller, “A staining technique for the study of two-dimensional dopant diffusion in silicon,” Journal of the Electrochemical Society, vol. 135, pp. 2370–2373, 1988.
[104] B. Tang, M. Shikida, K. Sato, P. Pal, H. Amakawa, H. Hida and K Fukuzawa, “Study of surfactant-added TMAH for applications in DRIE and wet etching-based micromachining,” Journal of Micromechanics and Microengineering, vol. 20, pp. 065008, 2010.