簡易檢索 / 詳目顯示

研究生: 李東哲
論文名稱: 化學氣相沉積法合成片狀奈米微晶石墨薄膜場發射特性之研究
Study on field emission characteristics of flake-like nanocrystalline graphite films fabricated by CVD method
指導教授: 蔡宏營
口試委員: 蔡宏營
王星豪
曾仕君
戴念華
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 75
中文關鍵詞: 化學氣相沉積場發射奈米微晶石墨
外文關鍵詞: CVD, field emission, nanocrystalline graphite
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用熱燈絲化學氣相沉積法成長具片狀結構的奈米微晶石墨薄膜,改變製程參數如氣體比例、成長溫度、添加氮氣及對基板進行前處理,討論各參數條件下奈米石墨的表面形貌、均勻度、結晶品質與場發射效果。接著,利用熱燈絲化學氣相沉積法及微波電漿輔助化學氣相沉積法分別成長出奈米石墨與超奈米鑽,製作出超奈米鑽/奈米石墨複合薄膜並探討各項特性。最後,利用黃光微影技術、非等向性蝕刻技術及成型技術製作具尖端結構場發射元件,量測元件各項性質並比較場發射效果。
    在本研究中,甲烷濃度9%成長出來的奈米石墨,場發射起始電場為12.3 V/μm,經氮氣摻雜後場發射起始電場降至約6~8 V/μm。超奈米鑽石/奈米石墨複合薄膜,起始電場在約6~7 V/μm,並由於鑽石高導熱性及結構強度保護下層奈米石墨,經多次量測仍保有高電流強度,具有相當好的再現性。而利用成形技術複刻出針端場發射陣列,製作出尖端結構增進場增益因子,結構高度為8.4 μm,底邊長度為12 μm,針尖間距與高度比值為3,量測到4~6 V/μm的起始電場並擁有高電流密度。本研究討論多種奈米微晶石墨薄膜的場發射特性,期望對場發射元件的開發上有所貢獻。


    In our research, flake-like nanocrystalline graphite(NCG) films were grown on the silicon substrate using hot-filament chemical vapor deposition(HFCVD) system. We observed NCG’s surface morphology, uniformity, crystal quality and measured their field emission properties after changing process parameters like gas ratio, growth temperature, adding nitrogen and using pretreatment. Afterward we fabricated the Ultra-nano crystalline diamond(UNCD) and NCG composite films and discussed their properties. Finally, we fabricated NCG, UNCD and UNCD/NCG pyramid-type field emission arrays by using lithography technique, anisotropic etching technique and molding technique. The experimental showed that the turn-on field on the NCG film grown by using 9% methane concentration was 12 V/μm. After adding nitrogen, the turn-on field decreased to about 6~8 V/μm. The turn-on field on the UNCD/NCG composite films were about6~7 V/μm. We observed the reproducibility on UNCD/NCG composite films’ field emission behavior due to the high thermal conductivity and mechanical strength on UNCD. For improving the field emission facter, we fabricated the pyramid-type field emission arrays. They were 8.4 μm in height, 12 μm in base length and 3 in the pitch to base length ratio . The lowest turn-on field of 4.78 V/μm can be obtained in NCG pyramid-type field emission arrays.

    摘要 I ABSTRACT II 目錄 III 圖目錄 VI 表目錄 XII 第一章 前言 1 第二章 文獻回顧 3 2.1 電子場發射效應 3 2.1.1 場發射基礎理論 3 2.1.2 發射端尺寸效應 5 2.1.3 場發射遮蔽效應 8 2.2 奈米碳材料簡介 13 2.2.1 零維(0D)、一維(1D)、二維(2D)及三維(3D)系統 13 2.2.2 石墨烯及奈米碳片介紹 14 2.2.3 奈米碳片的成長機制及成長方式 17 2.3 奈米碳材料的拉曼光譜分析 23 2.4 表面加工處理尖端場發射元件 27 第三章 實驗規劃與製程 29 3.1 實驗流程規劃 29 3.2 實驗藥品與氣體 30 3.3 製程儀器 31 3.3.1 熱燈絲化學氣相沉積系統(HFCVD) 31 3.3.2 微波電漿化學氣相沉積系統(MPECVD) 34 3.4 檢測儀器 36 3.4.1 掃描式電子顯微鏡(Scanning electron microscopy, SEM) 36 3.4.2 拉曼光譜分析儀(Raman spectrometer) 37 3.4.3 四點探針量測儀(Four-point probe) 39 3.4.4 場發射量測系統 39 第四章 實驗分析與結果討論 41 4.1 奈米微晶石墨(NANOCRYSTALLITE GRAPHITE, NCG)之製程 41 4.1.1 不同前處理製程與場發射特性之討論 41 4.1.2 不同甲烷氣體濃度製程與場發射特性之討論 47 4.1.3 添加氮氣製程與場發射特性討論 50 4.1.4 不同成長溫度製程與場發射特性之討論 55 4.1.5 超奈米鑽與奈米石墨複合薄膜 58 4.2 尖端結構元件製程 62 4.3 場發射結果綜合比較與討論 68 第五章 結論與未來展望 71 參考文獻 73

    [1] R. H. Fowler and L. Nordheim, “ Electron Emission in Intense Electric Fields,” Proceedings of the Royal Society of London. Series A, VOL.119, pp.173-181, 1928.
    [2] J. He, P. H. Cutler, and N. M. Miskovsky, “Generalization of Fowler–Nordheim field emission theory for nonplanar metal emitters,” Applied Physics Letters, vol.59, pp.1644-1646, 1991.
    [3] K. L. Jensen and E. G. Zaidman, “Field emission from an elliptical boss: Exact versus approximate treatments,” Journal of Applied Physics, vol.63, p.702, 1993.
    [4] K. L. Jensen and E. G. Zaidman, “Field emission from an elliptical boss: Exact and approximate forms for area factors and currents,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.12, p.776, 1994.
    [5] K. L. Jensen and E. G. Zaidman, “Analytic expressions for emission in sharp field emitter diodes,” Journal of Applied Physics, vol.77, pp. 3569-3571, 1995.
    [6] T. S. Fisher, “Influence of nanoscale geometry on the thermodynamics of electron field emission,” Applied Physics Letters, vol.79, p.3699, 2001.
    [7] T. S. Fisher and D. G. Walker, “Thermal and Electrical Energy Transport and Conversion in Nanoscale Electron Field Emission Processes,” Journal of Heat Transfer, vol.124, pp.954-962, 2002.
    [8] L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, and L. Schlapbach, “Scanning field emission from patterned carbon nanotube films,” Applied Physics Letters, vol.76, pp.2071-2073, 2000.
    [9] J. S. Suh, K. S. Jeong, and J. S. Lee , “Study of the field-screening effect of highly ordered carbon nanotube arrays,” Applied Physics Letters, vol.80, pp.2392-2394, 2002.
    [10] R. C. Smith and S. R. P. Silva, “Maximizing the electron field emission performance of carbon nanotube arrays,” Applied Physics Letters, vol.94, pp.133104-3, 2009.
    [11] Y. Wu, B. Yang, B. Zong, H. Sun, Z. Shen, and Y. Feng, “Carbon nanowalls and related materials,” Journal of Materials Chemistry, vol.14, pp.469-477, 2004.
    [12] A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nature Materials, vol.6, pp.183-191, 2007.
    [13] Y. Ando, X. Zhao, and M. Ohkohchi, “Production of petal-like graphite sheets by hydrogen arc discharge,” Carbon, vol.35, pp.153-158, 1997.
    [14] Y. Wu, P. Qiao, T. Chong, and Z. Shen, “Carbon Nanowalls Grown by Microwave Plasma Enhanced Chemical Vapor Deposition,” Advanced Materials, vol.14, pp.64-67, 2001.
    [15] S. Kurita, A. Yoshimura, H. Kawamoto, T. Uchida, K. Kojima, M. Tachibana, P. Molina-Morales, and H. Nakai, “Raman spectra of carbon nanowalls grown by plasma-enhanced chemical vapor deposition,” Journal of Applied Physics, vol.97, pp. 104320-5, 2005.
    [16] K. Kobayashi, M. Tanimura, H. Nakai, A. Yoshimura, H. Yoshimura, K. Kojima, and M. Tachibana, “Nanographite domains in carbon nanowalls,” Journal of Applied Physics, vol.101, pp. 094306-4, 2007.
    [17] A. Malesevic, R. Kemps, A. Vanhulsel, M. P. Chowdhury, A. Volodin, and C. V. Haesendonck, “Field emission from vertically aligned few-layer graphene,” Journal of Materials Chemistry, vol.104, pp.084301-5, 2008.
    [18] N. G. Shang, F. C. K. Au, X. M. Meng, C.S. Lee, I. Bello, and S. T. Lee, “Uniform carbon nanoflake films and their field emissions,” Chemical Physics Letters, vol.358, pp.187-191, 2002.
    [19] T. Itoh, “Synthesis of carbon nanowalls by hot-wire chemical vapor deposition,” Thin Solid Films, vol.519, pp.4589-4593, 2011.
    [20] J. Hodkiewicz, “Characterizing Carbon Materials with Raman Spectroscopy,” Thermo Fisher Scientific, 2010.
    [21] D. S. Knight and W. B. White, “Characterization of diamond films by Raman spectroscopy,” Journal of Materials Chemistry, vol.4, pp.385-393, 1989.
    [22] L. G. Cançado, K. Takai, T. Enoki, M. Endo, Y. A. Kim, H. Mizusaki, A. Jorio, L. N. Coelho, R. Magalhães-Paniago, and M. A. Pimenta, “General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy,” Applied Physics Letters, vol.88, p.163106, 2006.
    [23] A.V. Karabutov, V. G. Ralchenko, I. I. Vlasov, R. A. Khmelnitsky, M. A. Negodaev, V. P. Varnin, and I. G. Teremetskaya, “Surface engineering of diamond tips for improved field electron emission,” Diamond and Related Materials, vol.10, pp.2178-2183, 2001.
    [24] K. E. Spear and J. P. Dismukes, Synthetic diamond: emerging CVD science and technology: Wiley, 1994.
    [25] P. T. Joseph, N. H. Tai, Chi-Young Lee, H. Niu, W. F. Pong, and I. N. Lin, “Field emission enhancement in nitrogen-ion-implanted ultrananocrystalline diamond films,” Journal of Applied Physics, vol.103, pp. 043720-6, 2008.
    [26] Y. C. Chen, X. Y. Zhong, B. Kabius, J. M. Hiller, N. H. Tai, I. N. Lin, “Improvement of field emission performance on nitrogen ion implanted ultrananocrystalline diamondfilms through visualization of structure modifications,” Diamond & Related Materials, vol.20, pp. 238-241, 2011.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE