簡易檢索 / 詳目顯示

研究生: 楊耀祖
Yang, Yao-Tsu
論文名稱: 新型十字布拉格共振腔應用於矽積體光學混成雷射
Novel Cross Distributed Bragg Reflector Cavities Applied for Hybrid Lasers on Silicon Integrated Photonics
指導教授: 李明昌
Lee, Ming-Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 70
中文關鍵詞: 雷射布拉格共振腔矽積體光學時域有限差分法光柵
外文關鍵詞: laser, DBR cavity, Silicon Integrated Photonics, FDTD, grating
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文利用時域有限差分法(FDTD)來進行模擬主動元件與被動元件混成十字布拉格共振腔雷射。為確保光能夠在共振腔內有效的共振,對光柵耦合器進行模擬分析。先以理論算出二階光柵的週期,再利用模擬找出最適當的週期,讓光能夠以九十度角耦合進入波導或耦合出波導外。增加布拉格反射層於基板之上,有效的提高反射效率與降低損耗。
    分析一階光柵長度與反射率之間的關係,將一階光柵反射器與二階光柵耦合器結合,控制一階光柵與二階光柵間距,可讓光耦合到空氣的反射率達99.9%。之後加入三五族(III-V)主動元件模擬雷射共振腔模態,並且針對不同的波長與不同的空間間隔分析其雷射共振腔之品質因子與光子生命週期。


    In this thesis, we utilized the finite-difference-time-domain (FDTD) method to design a cross-coupled distributed bragg reflector (DBR) cavitie applied for hybrid lasers made on silicon waveguides. This cross-coupled DBR cavity consists of two pairs of DBR mirrors; one is fabricated on the silicon waveguide and the other is employed on the top and bottom of the waveguide, respectively. The top DRB mirror is made by III-V active layers. In order to guarantee light cross-resonating inside the cavity, a second-order grating on the silicon waveguide was designed first and optimized to have ideal orthogonal wave coupling between the two DBR pairs.
    Second, a parameter scanning was conducted to find an optimal distance between the first- and the second-order gratings on the waveguide. Also, the gap spacing between the silicon waveguide and the III-V DBR mirror was examined. Finally, we concluded that the quality factor, resonant wavelength, photon lifetime, and mode profile of the cavity could be a function of the gap spacing. A mode hopping effect was also observed.

    摘要 I Abstract II 致謝 III 目錄 IV 圖表目錄 V 第一章 緒論 1 1.1 前言 1 1.1.1光連結系統類型 2 1.2矽光子學 3 1.3 研究動機與目的 4 1.4 論文架構 5 第二章 理論背景 6 2.1光波導理論 6 2.2平面光波導 10 2.2.1平板波導10 2.3光波導耦合器 14 2.3.1橫向耦合器 15 2.3.2菱鏡耦合器 15 2.3.3光柵耦合器 16 第三章 時域有限差分法(Finite Difference Time Domain Method)19 3.1 FDTD發展歷史 19 3.2馬克斯威爾方程式 20 3.3 FDTD基本架構與運算 22 3.4精確度與穩定條件 28 第四章 模擬分析與討論 29 4.1二階光柵設計 30 4.1.1光柵週期的選擇 30 4.1.2光柵深度的選擇 34 4.1.3二氧化矽厚度的選擇 35 4.2一階光柵設計 36 4.2.1光柵週期的選擇 36 4.3結合二階光柵耦合器與一階光柵反射器 38 4.4結合III-IV族材料 42 4.5共振腔分析與討論 46 第五章 結論與未來展望 56 參考文獻 57

    [1] R. T. Chen, L. Lin, C. Choi, Y. J. Liu, B. Bihari, L. Wu, S. Tang, R.Wickman,B. Pickor, M. K. Hibbs-Brenner, J. Bristow, and Y. S. Liu,“Fully embedded board-level guided-wave optoelectronic interconnects,” Proc.IEEE, vol. 88, pp. 780–793, June 2000.
    [2] J. W. Goodman, F. I. Leonberger, S. Y. Kung, and R. A. Athale, “Optical intercon-nections for VLSI systems,” Proc. IEEE, vol. 72, pp. 850–866, July 1984.
    [3] D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,”Proc. IEEE, vol. 88, pp. 728–749, June 2000.
    [4] M. R. Feldman, S. C. Esener, C. C. Guest, and S. H. Lee,“Comparison between optical and electrical interconnects based on power and speed considerations,” Appl.Opt., vol. 27, pp. 1742–1751, May 1, 1988.
    [5] R. K. Kostuk, M. Kato, and Y. T. Huang, “Polarization properties of substrate-mode holographic interconnects,” Appl. Opt., vol. 29, pp.3848–3854, Sept. 10, 1990.
    [6] R. T. Chen, S. Tang, M. M. Li, D. Gerald, and S. Natarajan, “1-to-12 surface normal three-dimensional optical interconnects,” Appl. Phys. Lett., vol. 63, pp. 1883–1885, Oct. 4, 1993.
    [7] J. H. Yeh and R. K. Kostuk, “Free-space holographic optical interconnects for board-to-board and chip-to-chip interconnections,”Opt. Lett., vol. 21, pp. 1274–1276, Aug. 15, 1996.
    [8] S. M. Schultz, High effciency volume grating coupler. PhD thesis, Georgia Institute of Technology, 1999.
    [9] Bahram Jalali, Mario Paniccia, and Graham Reed, "Silicon photonics," IEEE microwave magazine, 7(3):58-68, 2006.
    [10] Jalali, B. and S. Fathpour, "Silicon photonics," Journal of Lightwave Technology, 24(12): 4600-4615, 2006.
    [11] Lipson, M., "Guiding, modulating, and emitting light on silicon - Challenges and opportunities," Journal of Lightwave Technology, 23(12): 4222-4238,2005.
    [12] Okamoto K. 2006. "Fundamentals of Optical Waveguides 2/E," Academic Press.
    [13] H. Nishihara, M. Haruna, and T. Suhara, “Optical integrated circuits”, McGraw-Hill Book Company, 1989.
    [14] Richard Syms John Cozens, "Optical guide wave and devices," New York, Mcgraw-Hill, 1992.
    [15] R. G. Hunsperger, “Integrated optics: Theory and technology”, Springer, 1995.
    [16] Liu, J. M., “Photonic Devices,” Cambridge University Press, 2005.
    [17] Chuang S.L.,“Physics of optoelectronic devices ”, Wiley Interscience, 1995.
    [18] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas and Propagation, Vol. 14, pp. 302-307, 1966.
    [19] A. Taflove, and M. E. Brodwin, “Numerical solution of steady-state electromagnetic scattering problem using the time-dependent Maxwell’s equations,” IEEE Trans. Microwave Theory and Techniques, Vol. 23, pp. 623-630, 1975.
    [20] A. Taflove, and M. E. Brodwin, “Computation of the electromagnetic fields and induced temperatures within a model of the microwave-irradiated human eye,” IEEE Trans. Microwave Theory and Techniques, Vol. 23, pp. 888-896, 1975.
    [21] R. Holland, “Threde: a free-field EMP coupling and scattering code,” IEEE Trans. Nuclear Science, Vol. 24, pp. 2416-2421, 1977.
    [22] K. S. Kunz, and K. M. Lee, “A three-dimensional finite-difference solution of the external response of an aircraft to a complex transient EM environment I: The method and its implementation,” IEEE Trans. Electromagnetic Compatibility, Vol. 20, pp. 328-333, 1978.
    [23] G. Mur, "Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic-field equations," IEEE Trans. Electromagnetic Compatibility Vol. 23, pp. 377-382, 1981.
    [24] Berenger J. P., "A perfectly matched layer for the absorption of electromagnetic waves", J. Com. Physics Vol. 114, pp. 185-200, 1994.
    [25] D. S. Katz, E. T. Thiele, and A. Tafloove, “Validation and extension to three dimensions of the Berenger PML absorbing boundary condition for FDTD meshes,” IEEE Microwave and Guided Wave Letters, Vol. 4, pp. 268-270, 1994.
    [26] A. Hardy, David F. Welch, William Streifer, “Analysis of second order gratings,” IEEE Journal of Quantum Electronics, Vol. 25, pp.2096-2105, 1989.
    [27] F. De Leonardis, V.M.N. Passaro, F. Magno, “Improved Simulation of VCSEL Distributed Bragg Reflectors”, IEEE 11th Int. Workshop on Computational Electronics (IWCE-11), pp. 315-316.
    [28] I.-S. Chung, et al.: Subwavelength grating-mirror VCSEL with a thin oxide gap, IEEE Photonic. Technol. Lett., vol. 20, pp. 105-107, Jan.2008.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE