研究生: |
蔡昌儒 Tsai, Chang Ru |
---|---|
論文名稱: |
有機複合釩磷酸鹽之合成及性質研究 Synthesis and Characterization of Organic-Incorporated Vanadyl Phosphates |
指導教授: |
王素蘭
Wang, Sue Lein |
口試委員: |
李光華
鄭建鴻 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 178 |
中文關鍵詞: | 釩磷酸鹽 |
外文關鍵詞: | Vanadyl Phosphate |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文利用中溫中壓水熱法,合成出四個新穎的有機複合金屬磷酸鹽
( Organo-metallophosphates )結構 (A1~A4)。A1 與A2 為單金屬釩磷酸鹽結構,
A3 與A4 則為雙金屬釩鋅磷酸鹽結構。此四結構是利用有機分子2,5-
Pyridinedicarboxylic acid ( PYDC )、1,2,4,5-tetra-(4-pyridyl)cyclohexanol (TPCH)、
或4,4’-bipyridine (BPY)作為配位基,所形成之一維(A2)、二維(A1)、三維(A4)及
擬三維結構(A3)。A1~A4 在常溫下皆為順磁性,低溫下皆為反鐵磁性;A3 及A4
則具有良好的二氧化碳吸附能力。所有化合物的鑑定方式都是以單晶X 光繞射
儀收集數據後進行結構解析,並測量磁性與氣體吸附性質。
A1 與A2 皆具有PYDC 作為配位基, 其化學式分別為[H2BPY]
[(VO)2(HPO4)2(PYDC)]與[H2BPY]2 [(VO)2(H2PO4)2(BPY)(PYDC)2 ]‧2H2O。A1 的
結構為釩和磷酸根以共角方式所形成的四環無限鏈,鏈與鏈之間再以PYDC 作
為橋梁所形成之二維結構;A2 則是由釩、磷酸根、以及配位在釩金屬上的PYDC
分子所形成二級建構單元,再以BPY 連結所形成的一維結構。為了增加結構的
變化性與多元性,在反應系統中額外加入鋅金屬得到了A3 與A4,化學式分別
為[H4TPCH]0.5[Zn2(H3TPCH)2(HPO4) (HPO3)][Zn(VO)8(OH)4(PO4)6(HPO4)2]‧3H2O
與[Zn2(BPY)VO(H2O)(PO4)2]‧4H2O。A3 為一個擬三維超分子結構,由鋅釩磷酸
根陰離子團簇(polyanion)和具有TPCH 配位基的鋅磷酸亞磷酸陽離子與
(H4TPCH)4+ 陽離子,三者相互以氫鍵連結形成; A4 具有三維中性有機無機複
合骨架結構,由鋅釩磷酸無機層以BPY 作為柱子連接形成。
A3 和A4 皆具有孔洞性:A3 在273 K 和298 K 下的二氧化碳氣體吸附分別
為7.91 cm3/g 和6.54 cm3/g,A4 在273 K 和298 K 下的二氧化碳氣體吸附分別
為66.3 cm3/g 和57.3 cm3/g。A3 與A4 的二氧化碳吸附能力差異的原因,推測是
由於A4 結構中有開放式的金屬配位 (open metal site) ,鑒於A4 中四價釩中心
上的配位水可被移除,產生出空置的配位空間,與二氧化碳產生相互作用,因此
提升吸附性,A4 在298 K 的二氧化碳吸附量,甚至超過ZIF-82 (52.7 cm3/g,ZIF
系列中最高值)。A4 具備很高的熱穩定性(~ 400 oC)、加上釩金屬中心可具有催化
能力,因此A4 有潛力能成為催化二氧化碳成有機小分子的材料。
This thesis used by hydrothermal method. Four organic-incorporated vanadyl
phosphates were synthesized(A1~A4).A1 and A2 are vanadyl phosphates structure,A3
and A4 are zinc vanadyl Phosphates structure. These four compounds are used 2,5-
Pyridinedicarboxylic acid ( PYDC )、1,2,4,5-tetra-(4-pyridyl)cyclohexanol (TPCH) or
4,4’-bipyridine (BPY) as ligands then formed 1-D (A2) 、2-D (A1) 、3-D (A4) 、
quasi-3-D (A3) structures. A1~A4 are paramagnetic in room temperature and antiferromagnetic
in hypothermia. A3 and A4 have good capability of carbon dioxide
adsorption. All compounds were characterized by single crystal X-ray diffraction and
measured the magnetic properties and the gas adsorption.
A1 and A2 used ligand PYDC to coordination. Their formula are [H2BPY]
[(VO)2(HPO4)2(PYDC)] and [H2BPY]2 [(VO)2(H2PO4)2(BPY)(PYDC)2 ]‧2H2O . A1
structure are vanadium and phosphate connected by coconner to formed 4-ring chain.
These chains are interlinked by PYDC to formed 2-D structure. A2 structure’s
secondary building units(SBUs) are composed by vanadium、phosphate and PYDC
ligand. The SBUs connect by BPY to formed 1-D structure. To increase variety and
diversity of structure. A3 and A4 were added zinc metal in the reaction systems. Their
formula are [H4TPCH]0.5[Zn2(H3TPCH)2(HPO4)(HPO3)][Zn(VO)8(OH)4(PO4)6
(HPO4)2] ‧ 3H2O and [Zn2(BPY)VO(H2O)(PO4)2] ‧ 4H2O. A3 is a quasi threedimensional
supramolecular structure. Its composed by vanadyl phosphate polyanion、
cation of ligand TPCH zinc phosphate phosphite and TPCH cation. Linked by hydrogen
bonds between the three. A4 is a neutral three-dimensional framework of organicinorganic
composite. The BPY is a bridge to connected zinc vanadyl phosphate layers.
Both A3 and A4 have porosity. A3 CO2 adsorption is 7.91 cm3/g in 273 K and 6.54
cm3/g in 298 K. A4 CO2 adsorption is 66.3 cm3/g in 273 K and 57.3 cm3/g in 298 K.
The different of A3 and A4 CO2 adsorption is due to A4 structure have open metal sites
but A3 haven’t. Because of A4 in the coordinated water for vanadium can be removal,
resulting in a vacant site to enhance the interaction with carbon dioxide. A4 CO2
adsorption amount even more than ZIF-82(52.7 cm3/g,the most CO2 adsorption amount
in ZIF systems )in 298 K. A4 possess high thermal stability(~ 400 oC) and catalytic to
be a potential material with catalytic carbon dioxide into organic small molecules.
1. Maspoch, D.; Ruiz-Molina, D.; Veciana, J., Chem. Soc. Rev. 2007, 36
(5), 770-818.
2. Breck, D. W. Zeolite Molecular Sieves,Wiley, New York, 1974.
3. Thomas, J. M.; Raja, R.; Sankar, G.; Bell, R. G. Nature, 1999, 398,
227.
4. Miller, R. D. Science, 1999, 286, 421.
5. Thomas, J. M. Angew. Chem., Int. Ed., 1999, 38, 3588.
6. Kuznickl, S. M. et al. Nature, 2001, 412, 720.
7. Davis, M. E. Nature, 2002, 417, 813.
8. Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O’Keeffe,
M.; Yaghi, O. M. Science, 2002, 295, 469.
9. Forster, P. M.; Eckert, J.; Chang, J. S.; Park, S. E.; Férey, G.;
Cheetham, A. K. J. Am. Chem. Soc., 2003, 125, 1309.
10. Kitagawa, S.; Kitaura, R.; Noro, S. Angew. Chem. Int. Ed., 2004, 43,
2334.
11. Murugavel, R.; ChoudHury, A.; Walawalkar, M. G.; Pothiraja, R.;
Rao, C. N. R. Chem. Rev., 2008, 108, 3549.
12.Murray, L. J.; Dincă, M.; Long, J. R. Chem. Soc. Rev., 2009, 38, 1294.
13. Han, S. S.; Mendoza-Cortés, J. L.; Goddard III, W. A. Chem. Soc.
Rev.,2009, 38, 1460.
14. Li, J. R.; Kuppler, R. J.; Zhou, H. C. Chem. Soc. Rev., 2009, 38, 1477.
15. Allendorf, M. D.; Bauer, C. A.; Bhakta, R. K.; Houk, R. J. T. Chem.
Soc. Rev., 2009, 38, 1330.
16. Guang Lu and Joseph T. Hupp , J. Am. Chem. Soc., 2010, 132 (23),
7832–7833
17. Michael G. Campbell, Sophie F. Liu, Timothy M. Swager, Mircea
Dincă , J. Am. Chem. Soc., 2015, 137 (43), 13780–13783
18. Jiancan Yu, Yuanjing Cui, Chuan-De Wu, Yu Yang, Banglin Chen,
and Guodong Qian , J. Am. Chem. Soc., 2015, 137 (12), 4026–4029
19. Quan-Guo Zhai, Xianhui Bu,, Chengyu Mao, Xiang Zhao, Pingyun
Feng, J. Am. Chem. Soc. 2016, 138, 2524−2527
20. Deville, H. S. C., Seances, C. R. H. Acad. Sci. 1862, 54, 324.
21.S. T. Wilson, B. M. Lok, C. A. Messina, T. R. Cannan, E. M. Flanigen,
J. Am. Chem. Soc. 1982, 104, 1146.
22.P. B. Moore, J. Shen, Nature, 1983, 306, 356.
23.M. E.Davis,Saldarriaga,C.Montes, J.Garces,C.Crowder, Nature, 1988,
331, 698.
24. M. Estermann, L. B. McKusker, C. Baerlocher, A. Merrouche, H.
Kessler, Nature,1991, 352, 320.
25.Q. Huo, R. Xu, S. Li, Z. Ma, J. M. Thomas, R. H. Jones, A. M.
Chippindale, J. Chem. Soc. Chem. Commun.1992, 875.
26. Y. Zhou, H. Zhu, Z. Chen, M. Chen, Y. Xu, H. Zhang, D. Zhao, Angew.
Chem. Int. Ed. 2001, 40, 2166.
27. J. Liang, J. Li, J. Yu, P. Chen, Q. Fang, F. Sun, R. Xu, Angew. Chem.
Int. Ed. 2006, 45, 2546.
28. Y. Yang, N. Li, H. Song, H. Wang, W. Chen, S. Xiang, Chem.
Mater.2007, 19, 1889.
29. L. Zhao, J. Y. Li, P. Cheri, R. Xu, Chem. Mater.2008, 20, 17.
30. M. B. Doran, A. J. Norquist, D. O’Hare, Chem. Comm. 2002, 2946.
31. I. Bull, P. S. Wheatley, P. Lightfoot, R. E. Morris, E. Sastre, P. A.
Wright, Chem. Comm.2002, 1180.
32. T. E. Altrecht-Schmitt, Angew. Chem. Int. Ed.2005, 44, 4836.
33. Y. Zhou, H. Zhu, Z. Chen, M. Chen, Y. Xu, H. Zhang, D. Zhao, Angew.
Chem. Int. Ed.2001, 40, 2166.
34. J. Plevert, T. M. Gentz, A. Laine, H. Li, V. G. Young, O. M. Yaghi,
M. O’Keeffe, J. Am. Chem. Soc.2001, 123, 12706.
35. X. Zou, T. Conradson, M. Klingstedt, M. S. Dadachov, M. O’Keeffe,
Nature, 2005, 437, 716.
36. T. Wessels, C. Baerlocher, L. B. McCusker, E. J. Creyghton, J. Am.
Chem. Soc.1999, 121, 6242.
37. A. Burton, S. Elomari, C. Y. Chen, C. M. Ronald, I. Y. Chan, L. M.
Bull, C. Kibby, T. V. Harris, S. I. Zones, E. S.Vittoratos, Chem. Eur. J.
2003, 9, 5737.
38. K. G. Strohmaier, D. E. W. Vaughan, J. Am. Chem. Soc. 2003, 125,
16035.
39. M. S. Wang, G. C. Guo, W. T. Chen, G. Xu, W. W. Zhou, K. J.Wu, J.
S. Huang, Angew. Chem. Int. Ed. 2007, 46, 1.
40. I. Boy, F. Stowasser, G. Schafer, R. Kniep, Chem. Eur. J. 2001, 7, 834.
41. J. Zhu, X. Bu, P. Feng, G. D. Stucky, J. Am. Chem. Soc. 2000, 122,
11563.
42. P. S. Halasyamani, S. M. Walker, D. O’Hare, J. Am. Chem. Soc. 1999,
121, 7415.
43. M.Eddaodi, J. Kim, N. Rosi, D. Vodak, J. Wachter, M. O’Keeffe, O.
M.Yaghi, Science, 2002, 295, 469.
44. A. P. Cote, A. I. Benin, N. W. Ockwig, M. O’Keeffe, A. J. Matzger, O.
M. Yaghi, Science, 2005, 310, 1166.
45. B. Wang, A. P. Cote, H. Furukawa, M. O’Keeffe, O. M. Yaghi, Nature,
2008, 453, 207.
46. C. H. Lin, S. L. Wang, K. L. Lii, J. Am. Chem. Soc. 2001, 123, 4649
47. Chia-Her Lin, Ya-Ching Yang, Chun-Yu Chen, S. L. Wang, Chem.
Mate. 2006, 18, 2095.
48. Y. C. Liao, F. L. Liao, W. K. Chang, S. L. Wang, J. Am. Chem. Soc.
2004, 126, 1320.
49. Y. H. Liao, Y. C. Jiang, S. L. Wang, J. Am. Soc. 2004, 127, 12794.
50. Y. C. Liao, C. H. Lin, S. L. Wang, J. Am. Soc. 2005, 127, 9986.
51. Y. L. Lai, K. H. Lii, S. L. Wang, J. Am. Soc. 2007, 129, 5350.
52. Y. C. Yang, S. L. Wang, J. Am. Soc. 2008, 130, 1146.
53. P. C. Jiang, Y. C. Yang, Y. C. Lai, Y. C. Liu, S. L. Wang, Angew. Chem
Int. Ed. 2009, 48, 742.
54. S. H. Huang, C. H. Lin, W. C. Wang, S. L. Wang, Angew. Chem. Int.
Ed. 2009, 48, 6124.
1-27
55. P. C. Jiang, N. T. Chuang, S. L. Wang, Angew. Chem. Int. Ed. 2010,
49, 4200.
56. S. H. Huang, S. L. Wang, Angew. Chem. Int. Ed. 2011, 50, 5319.
57. Y. C. Chang, S. L. Wang, J. Am. Chem. Soc. 2012, 134, 9848.
58. H. Y. Lin, C. Y. Chin, H. L. Huang, W. Y. Huang, M. J. Sie, L. H. Huang,
Y. H. Lee, S. L. Wang, Science, 2013, 339, 811.
59. H. L. Huang, S. L. Wang, Angew. Chem. Int. Ed. 2015, 54, 965-968.