簡易檢索 / 詳目顯示

研究生: 胡淑惠
Shu-Hui Hu
論文名稱: 利用奈米碳管進行直接電鍍於非導體表面之研究
The Study of Direct Electroplating on Nonconductor Surfaces via CNT
指導教授: 萬其超
Chi-Chao Wan
王詠雲
Yung-Yun Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 72
中文關鍵詞: 奈米碳管電鍍
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本論文是將奈米碳管作為商業黑影製程的修改實際應用到印刷電路板中的鍍通孔製程的研究。鍍通孔大致上可分為兩類,一種是無電鍍銅,另一種則是直接電鍍,後者又可細分成三類-鈀膠體、導電高分子、碳系統。黑影製程是碳系統之一,其使用石墨作為導體供鍍通孔使用,奈米碳管也是導電碳材的一種,由於奈米碳管獨特電性,我們試圖將其中最重要的石墨懸浮液以奈米碳管取代作鍍通孔製程。
    在實驗中首先來量測經過鍍通孔之後的印刷電路板的電阻,所選用作為導體的吸附物有三種,一種是商業黑影製程所使用的石墨膠體,一種是奈米碳管,最後一種則是兩者的混合。當我們使用黑影製程時,銅面間的電阻為170~280歐姆,若將石墨換成奈米碳管時,電阻下降至18~36 歐姆,此值足足少了石墨層10倍,這是奈米碳管的優勢所在。
    之後探討奈米碳管在樹脂板上的吸附型態,發現奈米碳管是無秩序排列吸附於基板上,而其吸附後所形成的形狀會與基板表面的幾何形狀相關,之後利用定電流在奈米碳管上長銅並使用掃描式探針顯微儀在觀察銅在奈米碳管上的生長情形。
    由於黑影製程的步驟不一定全部適用於奈米碳管,故在本實驗中以現有製程中改變某些參數來尋找最適合條件,發現用來吸附奈米碳管的清潔整孔溶液以ML371在攝氏60度下較為適宜,此種溶液原本是無電鍍製程中拿來吸附鈀的,相較於黑影製程中拿來吸附石墨粒子的CCⅢ溶液。而原本在黑影製程中所使用的定影液(Fixer)會使背光度變差因此捨棄不用,確定了最適合的條件後分別量測以定電壓或定電流方式下的電鍍速率以及其相對的背光值。
    為了改進在低電流密度下的背光效果,使用另外兩種新的奈米碳管,並發現當奈米碳管為兩者之組合時,可以得到較好的效果,最後就與商業的黑影製程作比較。


    Table of Content Abstract I Table of Content IV List of Figures VI List of Tables IX Chapter 1 Introduction 1 Chapter 2 Literature Review 3 2.1 PTH Process 3 2.2 Electroless Copper Deposition 4 2.3 Direct Plating 4 2.4 Pd Colloid Systems 5 2.5 Conductive Polymer System 5 2.6 Carbon colloid system 5 2.6.1 Black hole 6 2.6.2 Shadow Process 7 2.7 Introduction of CNT 14 2.8 Method to Synthesize Nanotube 15 2.8.1 Arc-Discharge 15 2.8.2 Laser Ablation (Laser Vaporization) 16 2.8.3 Catalytic Chemical Vapor Deposition (CCVD) 17 2.9 Properties of CNTs 18 2.9.1 Mechanical Properties 18 2.9.2 Electronic Properties 18 2.9.3 Bulk Density 19 2.9.4 Thermal Conductivity 19 2.9.5 Ballistic Conductor 20 2.10 Metallization of MWNTs 20 2.11 Motive and Scope of this Thesis 23 Chapter 3 Experiment Sections 24 3.1 Materials 24 3.2 Experimental Instruments 24 3.3 Principle and Measurement of Analytical Methods 25 3.3.1 Chronocoulometry 25 3.3.2 Chronopotentiometry 26 3.3.3 Two-point probe method 26 3.3.4 SEM 27 3.3.5 EDX 27 3.3.6 The Judgment for the Back-light Performance 28 3.3.7 Reliably-Thermal Stress Test 29 3.4 CNT suspension 29 Chapter 4 Results and Discussions 33 4.1 Comparison the Resistance between CNT and Graphite 33 4.2 Copper Electroplating on CNTs 34 4.3 Process for CNTs Adsorption 39 4.3.1 Electroplating Method- Chronocoulometry 39 4.3.2 Electroplating Method- Chronopotentiometry 42 4.4 Copper Deposition Rate and Relative Back Light Performance 48 4.4.1 Copper Deposition Rate 48 4.4.2 Back-Light Performance with different electroplating method 50 4.5 Different Types of Carbon Nanotubes 55 4.5.1 Basic properties of new kinds of carbon nanotube 55 4.5.2 Back-light Performances and SEM morphologies of different types of CNTs 58 4.6 Comparison of Commercial Product- Shadow Process 65 Chapter 5 Conclusions 68 Chapter 6 Future Work 69 References 70 List of Figures Fig. 2-1. The structure of (a) diamond, (b) carbon black, (c) graphite 6 Fig. 2-2. The procedures of Shadow processes. 7 Fig. 2-3. Shadow conditioner mechanism. 8 Fig. 2-4. The sketch diagram of the graphite colloid, the surface of the graphite is filled with binders. 10 Fig. 2-5. The sketch of graphite colloid and its adsorption condition. 10 Fig. 2-6. The sketch of the surface condition on the hole wall after fixer step. 11 Fig. 2-7. The mechanism of cross linking between graphite particles and PCB. 12 Fig. 2-8. The sketch of graphite layer coating after micro-etching. 12 Fig. 2-9. The sketch of the surface conditions of the hole wall in the shadow process, it can be distinguished into six steps, they are (a) After desmear and deburr, (b) Cleaner/ Conditioner step, (c) Graphite colloid, (d) After fixer and dry, (e) After micro-etching, (f) After Copper plating. 13 Fig. 2-10. SWNT can regard as a piece of graphene rolled up into a cylinder. 14 Fig. 2-11. (a) The two basis vectors a1 and a2 are shown. Folding of the (8,8),(8,0) and (10,-2) vectors leads to (b) armchair, (c) zigzag, and (d) chiral, respectively. 15 Fig. 2-12. Schematic diagram of the arc discharge apparatus. 16 Fig. 2-13. Oven laser-vaporization apparatus. 17 Fig. 2-14. The schematic diagram of catalytic chemical vapor deposition apparatus. 18 Fig. 2-15. The mechanism of CVD. 18 Fig. 2-16. It shows three kinds of tubes-armchair, zigzag, and chiral, respectively. 19 Fig. 2-17. The stages in the electroless plating-decoration process employing the two-step sensitization-activation approach. [31] 21 Fig. 2-18. Schematic of the growth process of the Cu-VGAF particles. (a) Carbon nanofibers become incorporate into the deposited Cu. (b) Cu deposits on the substrate and the ends of the carbon nanofibers. (c) Deposited Cu grows to incorporate the carbon nanofibers, resulting in a spiky ball structure. [36] 22 Fig. 2-19. Schematic of the selective deposition of Ni on the MWCNT. [38] 22 Fig. 3-1. Potential wave form of (a) the double potential step technique, (b) the current response, and (c) the charge response [39]. 25 Fig. 3-2. Current wave form of (a) constant current, (b) the potential response. 26 Fig. 3-3. Positions to measure the resistance on the two copper sides of a PCB 26 Fig. 3-4. The sketch for the measurement of the back-light performance by OM. 28 Fig. 3-5. The standard chart of the back-light performance in PCB industry. 29 Fig. 3-6. The sketch for a planar sample (a) positive side, (b) reverse side. 30 Fig. 3-7. The sketch for samples (a) porous sample, (b) side-view of sample, (c) the diameter of an aperture on the porous sample. 30 Fig. 4-1. SEM images of (a) FR-4, (b) CNTs adsorbed on the FR-4, (c) steel plate, (d) CNTs were adsorbed on the steel plate (magnification:1000X), (e) CNTs were adsorbed on the steel plate (magnification:3000X) 36 Fig. 4-2. SEM images showing the growth of Cu-CNTs at (a) 0.5C cm-2 , (b) 1.5C cm-2 , (c) 2.5C cm-2 , (d) 5C cm-2. 37 Fig. 4-3. EDX data of Cu-CNTs at (a) 0.5C cm-2, (b) 5C cm-2. 37 Fig. 4-4. SEM images showing the growth of Cu-graphite at(a) graphite adsorbed on FR-4, (b) 0.5C cm-2, (c) 1.5C cm-2, (d) 2.5C cm-2. 38 Fig. 4-5. Different choices of cleaner/conditioner step resulted in chronocoulometry. 41 Fig. 4-6. Chronocoulometry with different choices of cleaner/conditioner step resulted in back-light performance. 41 Fig. 4-7. Different conditions of cleaner/ conditioner step resulted in chronopotentiometry. 43 Fig. 4-8 Chronopotentiometry with different choices of cleaner/conditioner step resulted in back-light performance. 43 Fig. 4-9. Various conditions of Cleaner/ Conditioner and Fixer steps (a) CCIII 30℃, (b) CCIII 50℃, (c) CCIII 60℃, (d) CCIII 60℃+ Fixer, (e) ML371 30℃, (f) ML371 50℃, (g) ML371 60℃, (d) ML371 60℃+ Fixer. 46 Fig. 4-10. The back light performance of various conditions of Cleaner/ Conditioner and Fixer steps (a) CCIII 30℃, (b) CCIII 50℃, (c) CCIII 60℃, (d) CCIII 60℃+ Fixer, (e) ML371 30℃, (f) ML371 50℃, (g) ML371 60℃, (d) ML371 60℃+ Fixer. 47 Fig. 4-11. The net Cu deposition on the CNTs, which electroplated under various potentials (-0.26, -0.28,-0.3,-0.32 V vs. SCE) and the duration time was 5 minutes. 49 Fig. 4-12. The net Cu deposition on the CNTs, which electroplated under various current (15, 20, 25, 30, 35 ASF) and the duration time was 5 minutes. 49 Fig. 4-13. Total current with time of various potentials which electroplated under -0.26, -0.28,-0.3,-0.32 V vs. SCE and the duration time was 5 minutes. 51 Fig. 4-14. The back light performance of drilled hole samples with various potentials (-0.26, -0.28,-0.3,-0.32 V vs. SCE) 51 Fig. 4-15 Potential with time of different media (graphite and CNT) for PTH. 53 Fig. 4-16. Potential with time of various current densities which electroplated under 15, 20, 25, 30, 35 ASF and the duration time was 5 minutes. 53 Fig. 4-17. The back light performance of drilled hole samples with various current densities (15, 20, 25, 30, 35 ASF). 54 Fig. 4-18. The morphologies of new CNTs (a) thin CNTs film, (b) thick CNTs film. 55 Fig. 4-19. SEM images showing the growth of Cu-Thin CNTs (a) 0.5C cm-2 , (b) 1.5C cm-2 , (c) 2.5C cm-2 , (d) 5C cm-2. 56 Fig. 4-20. SEM images showing the growth of Cu-Thick CNTs (a) 0.5C cm-2 , (b) 1.5C cm-2 , (c) 2.5C cm-2 , (d) 5C cm-2. 57 Fig. 4-21. The back-light performance of three kinds of carbon nanotubes (normal, thin and thick CNTs). 58 Fig. 4-22. (a) The profile of a hole of a PCB, the morphologies of (b) thin CNTs adhered to the epoxy; (c) thin CNTs adhered to the glass fiber. 59 Fig. 4-23. The morphologies of (a) thick CNTs adhered to the epoxy; (b) thick CNTs adhered to the glass fiber. 60 Fig. 4-24. The back-light performance of twice dipped carbon nanotubes (the combination is as following: thick-thin, thick-thick and thin-thick CNTs). 61 Fig. 4-25. SEM morphologies of (a) the cross-section view of a PCB hole which covered with thick-thin CNT, (b) enlargement of a crevice in thick-thin film. 62 Fig. 4-26. The SEM morphologies of (a) thick CNTs in epoxy part; (b) thick CNTs in fiber part. 63 Fig. 4-27. Chronopotentiometry method-twice dipped thick CNTs compared with single dipped. 63 Fig. 4-28. SEM morphologies of (a) the cross-section view of a PCB hole which covered with thin-thick CNTs in epoxy region, (b) thin-thick CNTs film in fiber region. 64 Fig. 4-29. Contrast the back-light performance of thin, thick, thin-thick and graphite. 65 Fig. 4-30. The thermal stress test results observed by OM. 66 List of Tables Table 2-1 Elecroless copper deposition procedures 4 Table 2-2 Thermal conductivities of three material-MWCNT, nature diamond and graphite. 19 Table 4-1 Different colloids (CNT. Graphite and their combination) have different resistance 33 Table 4-2 Various conditions of Cleaner/ Conditioner step 39 Table 4-3 Various conditions of Cleaner/ Conditioner and Fixer steps 44 Table 4-4 Basic properties of three kinds of carbon nanotubes. 55

    References
    1. D. A. Radovsky, B.J. Ronkese, Method of electroplating o a dielectric base. U.S. Patent No. 3,099,608 (1963)
    2. C.C. Wan, Proc. Natl. Sci. Counc. ROC(A), Vol. 23, No. 3 (1999), 365
    3. S. Iijima, Nature, 354, (1991) 56
    4. 莊達人, “錫鈀膠體(II)”, 電路板資訊, 57, 46 (1993)
    5. Takagi et al., U.S. Patent No. 6,156,385 (2000)
    6. C.R. Shipley, Method of electroless deposition on a substrate and catalyst solution therefore. U.S., Patent No. 3,011,920 (1961)
    7. D.M. Morrissey, P.E. Takach, R.J. Zeblisky, Method for electroplating non-metallic surface. U.S. Patent No. 4,683,036 (1987)
    8. K. Okabyashi, Method for directly electroplating a dielectric substrate and plated substrate so produced. U.S. Patent No. 5,071,517 (1911)
    9. J.J. Bladon, Pretreatment for electroplating process. U.S. Patent No. 4,895,739 (1990)
    10. H. Meyer, R.J. Nichols, D. Schroer, L. Stamp, Electrochimica Acta, 39, 1325 (1994)
    11. R.S. Pai, The Phoenix. PCB Information (in Chinese), 45, 83 (1991)
    12. J. Hupe, W. Kronenberg, Though-hole plate printed circuit board with resist and process for manufacturing same. U.S. Patent No. 5,373,629 (1994)
    13. B. Bressel, H. Meyer, W. Meyer, K. Gedrat, Process for metallization of a nonconductor surface, especially on a circuit board having preexisting copper surface. U.S. Patent No. 5,183,552
    14. F. Polakovic, A.M. Piano, Process for preparing the through hole walls of a printed wiring board for electroplating. U.S. Patent No. 4,622,108
    15. M. Carano, Circuit World, 25/3 (1995) 18
    16. TPCA (2005), 電路板濕製程全書, 台灣電路板協會
    17. Michael Carano, Wei-Ping Dow, Frank Polakovic and C. Edwin Thorn, 1999, The Use of a Chemical Fixing Agent with Colloidal Graphite for Producing High Reliability Throughvias and Microvias, CircuiTree, 12, pp. 120-126
    18. 吳孟縈, ‘‘電鍍液中的氯離子及促進劑對石墨型活化液在直接電鍍製程中的影響’’, 碩士論文, 國立清華大學, 中華民國台灣 (2003)
    19. The electrochemical Society Interface (summer, 2006)
    20. H. Dai, Acc. Chem. Res., 35, (2002) 1035
    21. 奈米碳管, 編者 成會明
    22. S. Cui, P. Scharff, C. Siegmund, D. Schneider, K. Risch, S.Klotzer, L. Spiess, H. Romanus, J. Schawohl, Carbon, 42, (2004) 931
    23. T.W. Ebbesen, P.M. Ajayan, Nature, 358, (1992) 220
    24. T. Guo, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley, Chem. Phys. Lett. 243, (1995) 49
    25. C. Journet, P. Bernier, Appl. Phys. A 67, (1998) 1
    26. M. M. J. Treacy, T. W. Ebbesen, J. M. Gibson, Nature, 381, (1996) 678
    27. L. Chico, L.X. Benedict, S.G. Louie, et al. Phys. Rev. B, 54, (1996) 2600
    28. W. Lu, X.C. Ma, N. Lun, S.L. Wen, Mater. Res. Soc. Symp. Proc., 820, (2004) 75
    29. X.C. Ma, N. Lun, X. Li, S.L. Wen, Mater. Res. Soc. Symp. Proc., 818, (2004) 95
    30. Y. Feng, H.L. Yuan, J. Mater. Sci., 39 (2004) 3241
    31. L.M. Ang, T.S.A. Hor, G.Q. Xu, C.H. Tung, S.P. Zhao, J.L.S. Wang, Carbon 38, (2000) 363
    32. S. Arai, M. Endo, N. Kaneko, Carbon 42 (2004) 641
    33. F. Wang, S. Arai, M. Endo, Carbon 43 (2005) 1716
    34. F.Z. Kong, X.B. Zhang, W.Q. Xiong, F. Liu, W.Z. Huang, Y.L. Sun, J.P. Tu, X.W. Chen, Surf. Coat. Technol. 155(2002) 33
    35. W.L. Liu, S.H. Hsieh, W.J. Chen, Appl. Surf. Sci.(2007), in press
    36. S. Arai, M. Endo, Electrochem. Commun. 5 (2003) 797
    37. C.L. Xu, G.W. Wu, Z. Liu, D.H. Wu, T.T. Meek, Q.Y. Han, Mater. Res. Bull. 39 (2004) 1499
    38. F. Wang, S. Arai, M. Endo, Electrochem. Commun. 6 (2004) 1042
    39. A.W. Bott, Ph.D. and W.R. Heineman, Ph.D., Bioanalytical Systems, Inc., 2701 Kent Avenue, West Lafayette, Indiana 47906 USA, University of Cincinnati, Cincinnati, Ohio 45221 USA
    40. H. Bubert, H. Jenett, Surface and thin film analysis: principles, instrumentation, applications, Wiley-VCH, Ch. 42 (2002)
    41. M. Jayakumar, K.A. Venkatesan, T.G.. Srinivasan, Electrochimica. Acta. 52 (2007), 7121
    42. R. Bomparola, S. Caporali, A. Lavacchi, U. Bardi, Surf. Coat. Technol. (2007), in press
    43. L. Hung, F.-Z. Yang, S.-K. Xu, S. M. Zhou, Transactions of the institute of metal finishing, vol. 84 (2006), 47
    44. A. Peigney, Ch. Laurent, E. Flahaut, R.R. Bacsa, A. Rpisset, Carbon, 39 (2001), 507

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE