簡易檢索 / 詳目顯示

研究生: 甯榮椿
Ning, Rong-Chun
論文名稱: 使用感應式耦合電漿反應式離子蝕刻系統蝕刻氮化矽與氮化鈦:選擇比研究與SC1溶液對氮化鈦溼蝕刻速率研究
Etching of SixNy and TiN Usning Inductively-Coupled Plasma Reactive Ion Etching: Study of Selectivity and Etching Rate of TiN with SC1 Wet Etching
指導教授: 洪銘輝
Hong, Minghwei
郭瑞年
Kwo, Raynien
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 81
中文關鍵詞: 選擇比蝕刻CHF3/O2感應式耦合電漿反應式離子蝕刻氮化矽氮化鈦
外文關鍵詞: selectivity, etch, CHF3/O2, ICP-RIE, SixNy, TiN
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,由電漿輔助化學汽相沉積系統成長的SixNy與用濺鍍系統成長的TiN經由感應式耦合電漿反應性離子蝕刻系統進行乾蝕刻,試圖找出使SixNy對TiN有高選擇比的蝕刻條件;也試圖找出TiN對SixNy及非破真空原子層沉積系統成長的Al2O3的SC1溶液在室溫下濕蝕刻選擇比。高SixNy對TiN選擇比以及SC1溶液在室溫下蝕刻TiN的速率都被找出,以利於製造微摻雜汲極結構的金氧半電晶體。在乾蝕刻氣體CHF3/O2的流量為20/10 SCCM的情況下得到了高達9的SixNy對TiN選擇比。此外,本篇論文對SixNy和TiN在不同的射頻功率下,乾蝕刻速率有相反趨勢的現象提出解釋。高射頻功率對蝕刻氣體的高解離程度,使得O2大量減少,因此沉積在SixNy表面防礙蝕刻進行的碳氟化合物高分子薄膜少了被O2反應移除的機會,因此SixNy蝕刻速率降低;高射頻功率也造成離子數量增加,促進離子轟擊效應,清除非揮發性的TiN副產物,因而增加TiN的蝕刻速率。同樣的機制也能用於解釋不同偏壓功率對SixNy和TiN蝕刻的趨勢。而Al2O3與SixNy在室溫下幾乎不被SC1溶液濕蝕刻,也避免了SC1溶液損害Al2O3氧化層與SixNy側壁間隔層的疑慮。論文中除了詳細描述蝕刻過程外,也介紹了各成長系統原理及電漿物理、蝕刻反應。


    In order to make the lightly doped drain region structure Ⅲ-Ⅴ MOSFET self-aligned process well-controlled, information about dry etching and wet etching must be investigated. In this thesis, the dry etching of PECVD-SixNy and sputtered TiN was performed with inductively-coupled plasma reactive ion etching system to ascertain the etching rates and selectivity of SixNy to TiN. Wet etching rates of sputtered TiN, in-situ ALD-Al2O3, PECVD-SixNy with SC1 solution were also demonstrated. With the etching chemistry CHF3/O2 whose flow rate was 20/10 SCCM, the highest selectivity of SixNy to TiN as 9.0 was demonstrated with Prf = 200 W, Pbias = 10 W. The etching rates of SixNy and TiN were 170.1 and 18.9 separately in this condition. In addition, the opposite tendencies of etching rate with increasing rf power between SixNy and TiN were explained. For SixNy, high rf power discharged more gaseous etchants, resulting in the reduction of large amount of O2 volumes. Therefore, the fluorocarbon polymer film which was deposited during etching process could be removed with much less O2 and then the etching rate of SixNy would decrease. For TiN, high rf power discharged more gaseous etchants and generated more ions to bombard the TiN surface. This removed TiN dry etching solid byproducts faster, so it enhanced the etching rate. The same mechanism could also explain tendencies of etching rate with increasing bias power of SixNy and TiN. As for wet etching, the etching rate of TiN with SC1 solution was about 9.1 nm/min, while Al2O3 and SixNy etched little with SC1. it meant the damage of Al2O3 gate oxide and SixNy sidewall spacer didn’t need to be worried about. Besides, principles of film deposition instruments, plasma physics, and etching reaction were introduced in this thesis.

    致謝 I 摘要 IV Abstract V Table of Contents VII Table Captions IX Figure Captions X Chapter 1. Introduction 1 1.1 Background 1 1.2 Hot Electron Injection 2 1.3 Lightly Doped Drain 6 1.4 SixNy Sidewall Spacer 7 1.5 Dry Etching of SixNy 10 1.6 Motivation of This Thesis 11 Chapter 2. Instrumentations and Theories 13 2.1 Inductively-Coupled Plasma Reactive Ion Etching 13 2.2 Atomic Force Microscope 21 2.3 Plasma-Enhanced Chemical Vapor Deposition 22 2.4 Sputtering System 24 2.5 In-Situ Atomic Layer Deposition 25 2.6 Mechanisms of Wet and Dry Etching 28 2.6.1 Chemical Etching and Ion Beam Milling 28 2.6.2 Chemical Reaction of TiN Wet Etching with SC1 30 2.6.3 Physics of Plasma 33 2.6.4 Mechanism of SixNy and TiN Dry Etching 36 2.6.4.1 Chemical Reaction of SixNy Etching with CHF3/O2 36 2.6.4.2 Chemical Reaction of TiN Etching with CHF3/O2 39 2.6.4.3 Deposition of Fluorocarbon Polymer Films 39 Chapter 3. Experimetal Procedure 41 3.1 Specimen Preparation 41 3.1.1 Surface Cleaning of Silicon Wafer 42 3.1.2 Silicon Nitride Film Deposition 43 3.1.3 Titaniun Nitride Film Deposition 44 3.1.4 Aluminum Oxide Film Deposition 45 3.2 Photo-Resist Patterning 47 3.3 Dry Etching and Wet Etching 50 3.3.1 Dry Etching with ICP-RIE 52 3.3.2 Experimental Design for Dry Etching 57 3.3.3 Wet Etching with SC1 Solution 58 3.4 Etching Depth Measurement 60 Chapter 4. Results and Discussion 61 4.1 AFM Results for SixNy and TiN Dry Etching 61 4.1.1 The Influence of RF Power to Etching Rate 64 4.1.2 The Influence of Bias Power to Etching Rate 67 4.1.3 Surface Roughness 71 4.2 AFM Results for TiN, Al2O3, SixNy Wet Etching 71 Chapter 5. Conclusion 76 Reference 77

    1.Moore GE. 1965. Cramming more components onto integrated circuits. Electronics 38: 114-117 pp.
    2.Chau R, Marcyk J. 2002. A new CMOS transistor architecture to improve drive performance and reduce parasitic leakages. Nikkei Microdevices: 83-88 pp
    3.Tyagi S. 2007. Moore’s Law: a CMOS scaling perspective. In: Physical and Failure Analysis of Integrated Circuits, 2007, 14th International Symposium; 2007 July 11-13; Bangalor, India. IEEE. 10-15 pp.
    4.Taur Y, Ning TH. 1998. Fundamentals of Morden VLSI Devices. Yew York: Cambridge Univ. Press. 139-149 pp.
    5.Elliott MT, Splinter MR et al.. 1979. Size effect in e-beam fabricated MOS devices. IEEE Trans. Electron Device 26: 469-475 pp.
    6.Troutman RR. 1979. VLSI limitation from drain-induced barrier lowering. IEEE Trans. Electron Device 26: 461-468 pp.
    7.Voldman SH, Bracchitta JA, Fitzgerald DJ. 1988. Band-to-band tunneling and thermal generation gate-induced drain leakage. IEEE Trans. Electron Device 35: 2433 p.
    8.Taur Y, Ning TH. 1998. Fundamentals of Morden VLSI Devices. Yew York: Cambridge Univ. Press. 97 p.
    9.Ning TH, Osburn CM, Yu HN. 1976. Threshold instability in IGFETs due to emission of leakage electrons from silicon substrate into silicon dioxide. Appl. Phys. Lett. 29: 198-200 pp.
    10.Abbas SA, Dockerty RC. 1975. Hot carrier instability of IGFETs. Appl. Phys. Lett. 27: 147-148 pp.
    11.Ning TH, Cook PW, Dennard RH et al.. 1979. 1 um MOSFET VLSI technology: part Ⅳ – hot-electron design constraint. IEEE Trans. Electron Device 26: 346-353 pp.
    12.Taur Y, Ning TH. 1998. Fundamentals of Mordern VLSI Devices. Yew York: Cambridge Univ. Press. 154-161 pp.
    13.Takeda E, Nakagome Y, Kume H, Asai H. 1983. New hot-carrier injection and device degradation in sub-micron MOSFETs. IEE Proc. 130: 144-150 pp.
    14.Saito K, Morose T, Sato K, Harada U. 1978. A new short-channel MOSFET with lightly-doped drain. Denshi Tsushin Rengo Taikai: 220-222 pp.
    15.Ogura S, Tsang PJ et al.. 1980. Design and characteristics of the lightly doped drain-source (LDD) insulated gate field-effect transistor. IEEE Trans. Electron Device 27: 1359-1367 pp.
    16.Tsang PJ, Ogura S et al.. 1982. Fabrication of high-performance LDDFETs with oxide sidewall spacer technology. IEEE Trans. Electron Device 29 : 590-596 pp.
    17.Saitoh M, Shibata H, Momose H, Matsunaga J, 1985. Degradation mechanism of lightly doped drain (LDD) n-channel MOSFETs studied by ultraviolet-light irradiation. J. Electrochem. Soc. 132: 2463-2466 pp.
    18.Mizuno T, Sawada S, Saitoh Y, and Shinozaki S. 1989. High dielectric LDD spacer technology for high-performance MOSFET using gate-fringing field effect. In: IEDM Tech. Dig.; 1989 Dec. 3-6: 613-616 pp.
    19.Huang T, Yao WW et al.. 1986. A novel submicron LDD transistor with inverse-T gate structure. In: IEDM Tech. Dig.;1986 Jan. 2: 742-745 pp.
    20.Hori T, Kurimoto K. 1988. A new MOSFET with large-tilt-angle implanted drain (LATID) structure. IEEE Trans. Electron Device 9: 300-302 pp.
    21. Moon JE, Garfinkel T. et al.. 1990. A new LDD structure – total overlap with polysilicon spacer (TOPS). IEEE Electon Device Lett. 11: 221-223 pp.
    22. Pfiester JR. 1988. LDD MOSFET’s using disposable sidewall spacer technology. IEEE Electron Device Lett. 9: 189-192 pp.
    23. Mizuno T, Kobori T et al.. 1992. Gate-fringing field effects on high-performance in high dielectric LDD spacer MOSFET. IEEE Trans. Electron Device 39 : 982-989 pp.
    24. Guo JC, Lu CY et al.. 1994. Performance and reliability evaluation of high dielectric LDD spacer on deep submicronmeter LDD MOSFET. IEEE Trans. Electron Device 41: 1239-1248 pp.
    25. Claflin B, Lucovsky G. 1998. Interface formation and thermal stability of advanced metal gate and ultrathin gate dielectric layers. J. Vac. Sci. Technol. B 16: 2154-2158
    26. 陳力俊。1990。微電子材料與製程。初版。新竹市: 中國材料學會。122頁
    27. Thompson LF, Wilson CG, Bowden MJ. 1983. Introduction of microlithography – theory, materials, and proceeding. Washington D.C.: American Chemical Society. 223p
    28. Pant BD, Tandon UX. 1999. Etching of silicon nitride in CCl2F2, CHF3, SiF4, and SF6 reactive plasma: a comparative study. Plasma Chem. And Plasma Proc. 19: 545-563 pp.
    29. Schaepkens M, Standaert TEFM et al.. 1999. Study of the SiO2-to-Si3N4 etch selectivity mechanism in inductively coupled fluorocarbon plasmas and a comparison with the SiO2-to-Si mechanism. J. Vac. Sci. Technol. A 17: 26-36
    30. Matsuo PJ, Standaert TEFM et al.. 1999. Characterization of Al, Cu and TiN surface cleaning following a low-岂 dielectric etch. J. Vac. Sci. Technol. B 17: 1435-1447
    31. Williams PF. 1997. Plasma processing of semiconductors. London: Kluwer Academic Publishers: 138 p.
    32. Popov OA. 1995. High density plasma source. New Jersey: Noyes Publications, Park Ridge: 100-122 pp.
    33. Xiao H. 2002. Introduction to semiconduction manufacturing technology. 臺北市: 臺灣培生教育出版: 249-251 pp.
    34. Keller JH, Forster JC, Barnes MS. 1993. Novel radio-frequency induction plasma processing technique. J. Vac. Sci. Technol. A 11: 2487-2491
    35. Lieberman MA, Lichtenberg AJ. 1994. Principles of Plasma Discharges and Materials Processing. New York: Wiley. 400 p.
    36. CE-300I Equipment Instruction Manual Book 2 Maintenance Guide. ULVAC. 8.8-8.25 pp
    37. Williams PF. 1997. Plasma processing of semiconductors. London: Kluwer Academic Publishers: 149-152pp
    38. Draper CF, 1995. The atomic force microscope: a nanometer scale material proderties porbe [dissertation]. Tennessee: Vanderbilt University. 34 p.
    39. Morita S, Wiesendanger R, Meyer E eds. Noncontact atomic force microscope.. 2002. Berlin: Springer, Nanoscience and Technology. 15 p.
    40. Einspruch NG, Brown DM. 1984. VLSI electronics vol. 8. London: Academic Press Inc. 17, 69-76 pp.
    41. Williams PF. 1997. Plasma processing of semiconductors. London: Kluwer Academic Publishers.33 p.
    42. Wasa K, Hayakawa S. 1992. Handbook of sputter deposition technology. New Jersey: Noyes Publications. 97-100 pp.
    43. 陳力俊。1990。微電子材料與製程。初版。新竹市: 中國材料學會。310頁
    44. Williams PF. 1997. Plasma processing of semiconductors. London: Kluwer Academic Publishers. 5, 25 p.
    45. Plummer JD, Deal MD, Griffin PB. 2002. Silicon VLSI Technology. Taiwan: Pearson Educ.. 601-610 pp.
    46. Verhaverbeke S, Parker JW. 1998. The role of the peroxide anion as an oxidizer in SC-1 solutions. In: Novak RE, Ruzyllo J et al., editors. Cleaning Technology in Semiconductor Device Manufacturing: 5th International Symposium (Proceedings) of the Electrochem. Society; Oct. 1998; Paris. 184-192 pp.
    47. Puurunen RL, Saarilahti J, Kattelus H. 2007. Implementing ALD layers in MEMS processing. In: Londergan A, Elam JW et al., editors. Atomic Layer Deposition Application 3, vol.11. New Jersey: Electrochem. Soc. Trans.. 3-14 pp.
    48. Chang CY, Sez SM, editors. 1996. ULSI Technology. New York: McGraw-Hill. 60 p.
    49. Kern W, Puotinen DA. 1970. Cleaning solutions based on hydrogen prtoxide for use in silicon semiconductor technology. RCA Rev. 31: 187-206 pp.
    50. Perrin DD. 1982. IUPAC Chemical Data Series No. 29. New York: Pergamon Press, Oxford.
    51. Chen FF, Chang JP. 2003. LectureNotes on Principles of Plamsa Processing. New York: Kluwer Academic,Plenum Publishers. 1-6 pp.
    52. Williams PF. 1997. Plasma processing of semiconductors. London: Kluwer Academic Publishers. 6 p.
    53. Chen FF, Chang JP. 2003. LectureNotes on Principles of Plamsa Processing. New York: Kluwer Academic,Plenum Publishers. 34 p.
    54. Lieberman MA, Lichtenberg AJ. 1994 Principles of Plasma Discharges and Materials Processin. New York: Wiley Intersc.. 368-372 pp.
    55. Miyata K, Hori M, Goto T, J. 1997. CFx (X = 1-3) radical densities during Si, SiO2, and Si3N4 etching employing electron cyclotron resonance CHF3 plasma. Vac. Sci. Technol. A 15: 568-572 pp.
    56. Mele TC, Nulman J, Krusius JP. 1984. Selective and anisotropic reactive ion etch of LPCVD silicon nitride with CHF3 based gases. J. Vac. Sci. Technol. B 2: 684-687 pp.
    57. Willians KR, Muller RS. 1996. Etch rate for micromaching process. IEEE Microelectromech. Syst. 5: 256-269 pp
    58. Vasile MJ, Stevie FA. 1982. Reaction of atomic fluorine with silicon – the gas-phase products. J. Appl. Phys. 53: 3799-3805 pp.
    59. Flamm FL, Donnelly VM, Mucha JA. 1981. The reaction of fluorine atoms with silicon. J. Appl. Phys. 52: 3633-3639 pp.
    60. Gatzet C, Blakers AW, Deenapanray PNK. 2006. Investigation of reactive ion etching of dielectrics and Si in CHF3/ O2 or CHF3/Ar for photovoltaic applications. J. Vac. Sci. Technol. A 24: 1857-1865 pp.
    61. Voloshin DG, Klopovskiy KS et al.. 2007. Simulation of gas-phase kinetics in CHF3: H2: O2 mixtures. IEEE Trans. Plasma Sci. 35: 1691-1703 pp.
    62. 王雅玢。1999。二氯二氟甲烷與三氟甲烷於高週波電漿系統中之反應機制 [博士論文]。台南市 : 國立成功大學。114頁。
    63. Takahashi K, Hori M, Goto T. 1996. Fluorocarbon radicals and surface reactions in fluorocarbon high density etching plasma. Ⅰ. O2 addition to electron cyclotron resonance plasma employing CHF3. J. Vac. Sci. Technol. A 14: 2004-2010
    64. Tonotani J, Iwamoto T et al.. 2003. Dry etching characteristics of TiN film using Ar/ CHF3, Ar/ Cl2, Ar/ BCl3. J. Vac. Sci. Technol. B 21: 2163-2168
    65. Fracassi F, d’Agostino R et al.. 1995. Dry etching of titanium nitride thin films in CF4–O2 plasma. J. Vac. Sci. Technol. A 13: 335-342
    66. Darnon M, Chevolleau T et al.. 2006. Etching characteristics of TiN used as hard mask in dielectric etch process. J. Vac. Sci. Technol. B 24: 2262-2270
    67. Hoffmann R. 2005. Molecular orbitals of transition metal complexes. New York: Oxford. 7p
    68. Kirmse W. 1971. Carbene Chemistry. Yew York: Academic. 209-235 pp.
    69. Thompson LF, Wilson CG, Bowden MJ. 1983. Introduction of microlithography -— theory, materials, and proceeding. Washington D.C.: American Chemical Society. 240p.
    70. Chen LL, Zhu L et al.. 2008. Role of CF2 in the etching of SiO2, SixNy and Si in fluorocarbon plasma. J. Semiconductors 30: 033005-1 – 033005-5
    71. The website of National Tsing Hua University Center for Nanotechnology, Materials Science, and Microsystems (NTHU CNMM). [Cited 2010 June 28] Available from http://www.cnmm.nthu.edu.tw/2009/equip/pecvd2.php
    72. CE-300I Equipment Instruction Manual Book 3 Maintenance Guide. ULVAC. 7.1-7.12 pp.
    73. CE-300I Equipment Instruction Manual Book 3 Maintenance Guide. ULVAC. 4.1 p.
    74. Gatzert C, Blakers AW et al.. 2006. Investigation of reactive ion etching of dielectrics and Si in CHF3/O2 or CHF3/Ar for photovoltaic applications. J. Vac. Sci. Technol. A 24: 1857-1865

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE