研究生: |
徐偉珉 Hsu, Wei-Min |
---|---|
論文名稱: |
鉈原子 6P1/2 → 6P3/2 之 χ=E2/M1 躍遷振幅比例的量測 Measurement of =E2/M1 amplitude ratio of atomic thallium 6P_1/2 → 6P_3/2 |
指導教授: |
劉怡維
Liu, Yi-Wen |
口試委員: |
陳應誠
Chen, Ying-Cheng 王立邦 Wang, Li-Bang |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 34 |
中文關鍵詞: | 鉈 、躍遷振幅比例 、電磁引發透明 |
外文關鍵詞: | amplitude ratio, Electromagnetically induced transparency, |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
這篇論文中,我們研究了鉈原子 (Thallium) 的電磁誘發透明 (EIT) 效 應和宇稱不守恆 (PNC) 之間的關係,並運用實驗得到的結果計算電四極 (E2) 和磁二極 (M1) 的躍遷振幅的比值 (E2/M1),利用階梯式電磁引發透 明消除都卜勒增寬,完全解析兩條相互對比的譜線。實驗使用兩個不同 的雷射光源,第一個是量子點二極體 (Quantumdot diode) 的外腔式半導體 雷射產生 1283nm 的紅外光,第二個是透過 1070nm 倍頻產生的 535nm 綠 光。我們也利用寬頻 EOM 的特性消除光強不穩的主要誤差,經過聲光 調製器 (AOM) 調製的一階 535nm 綠光停在 |6P3/2, F = 1> → |7S1/2, F = 0>, 同時讓經過光纖耦合的電光調製器 (Fiber EOM) 的 1283nm 紅外光產生和 中心頻率相距 10.4GHz 的 sideband,掃過 |6P1/2, F = 0> → |6P3/2, F = 1> 和 |6P1/2, F = 1> → |6P3/2, F = 1> 兩個躍遷。兩道光在約 600°C 的 thallium cell 中重疊得到兩個不同的 EIT 訊號,雷射主頻只需掃動數百 MHz,即可得到 原本相距 21GHz 的光譜訊號。紀錄不同幫浦光與探測光偏振夾角下的訊 號,以取得訊號最大值以及曲線擬合的方式,得出兩條譜線強度的比值, 以計算在宇稱不守恆中與弱交互作用相關的重要參數 χ,也就是躍遷振幅 的比值 (E2/M1),曲線擬合方法結果為 χ = 0.2516 ± 0.0084,與理論計算結 果 (0.254) 一致,但和先前實驗的數值 0.24 有一個標準差的差異。
In this thesis, we utilized the electromagnetically induced transparency (EIT) spectroscopy to measure transition amplitude ratio of electric quadrupole (E2) and magnetic dipole (M1) of 6P1/2→6P3/2 of atomic thallium, which plays a crucial role in the measurement of parity nonconservation. EIT was used to eliminate the Doppler broadening to resolve the transitions from overlapping signals of dif ferent isotopes. We use two different laser sources in our experiment, the first is 1283nm infrared light generated by quantumdot (QD) external cavity diode laser, and the second is 535nm green light generated by 1070nm laser frequency dou bling. A broad band Electrooptical modulator was used to reduce the major sys tematic error of the power instability. The 535nm laser is modulated by AOM to perform the modulation transfer spectroscopy, and its frequency is at the resonance of |6P3/2, F = 1> → |7S1/2, F = 0>. The 1283nm laser is coupled into a fiberbased EOM and generate 10.4GHz sideband, therefore it scans through |6P1/2, F = 0> → |6P3/2, F = 1> and |6P1/2, F = 1> → |6P3/2, F = 1> transitions just by hundreds MHz tuning, because the two sideband are ∼21GHz apart, close to the separation of the transitions to be measured. Two lasers overlap in 600°C thallium cell for EIT spectroscopy. We recorded the signals with various polarization angles to cal culate the χ = E2/M1 using the peak heights of signal and the theoretical profile model fitting to find the transition strengths of two transitions. The result, using fit ting method is χ = 0.2516 ± 0.0084, which agrees with the theoretical calculation 0.254, but with 1σ away from the previous experimental measurement.
[1] T.Lingetal.,“量子點雷射之niceohms光譜及共振腔增強原子宇稱不守恆之可行性
研究,” 清華大學物理學系學位論文, pp. 1–178, 2015.
[2] T.D.LeeandC.N.Yang,“Questionofparityconservationinweakinteractions,”Physical
Review, vol. 104, no. 1, p. 254, 1956.
[3] M. Bouchiat and C. Bouchiat, “Weak neutral currents in atomic physics,” Physics Letters B, vol. 48, no. 2, pp. 111–114, 1974.
[4] C. Wood, S. Bennett, D. Cho, B. Masterson, J. Roberts, C. Tanner, and C. E. Wieman, “Measurement of parity nonconservation and an anapole moment in cesium,” Science, vol. 275, no. 5307, pp. 1759–1763, 1997.
[5] N. Edwards, S. Phipp, P. Baird, and S. Nakayama, “Precise measurement of parity non conserving optical rotation in atomic thallium,” Physical review letters, vol. 74, no. 14, p. 2654, 1995.
[6] A. D. Cronin, New techniques for measuring atomic parity violation. University of Wash ington, 1999.
[7] W.L.Chen,T.L.Chen,andY.W.Liu,“Sidebandamplitudemodulationabsorptionspec troscopy of ch 4 at 1170 nm,” Optics express, vol. 27, no. 15, pp. 21264–21272, 2019.
[8] A.JoshiandM.Xiao,“Electromagneticallyinducedtransparencyanditsdispersionprop erties in a fourlevel invertedy atomic system,” Physics Letters A, vol. 317, no. 56, pp. 370–377, 2003.
[9] P. Vetter, D. Meekhof, P. Majumder, S. Lamoreaux, and E. Fortson, “Precise test of elec troweak theory from a new measurement of parity nonconservation in atomic thallium,” Physical review letters, vol. 74, no. 14, p. 2658, 1995.
[10] P. Majumder and L. L. Tsai, “Measurement of the electric quadrupole amplitude within the 1283nm 6 p 1/2 6 p 3/2 transition in atomic thallium,” Physical Review A, vol. 60, no. 1, p. 267, 1999.
[11] D.V.NeufferandE.D.Commins,“Calculationofparitynonconservingeffectsinthe6p 1 2 2 7 p 1 2 2 forbidden m 1 transition in thallium,” Physical Review A, vol. 16, no. 3, p. 844, 1977.