簡易檢索 / 詳目顯示

研究生: 湯淵富
論文名稱: 鐵電薄膜鋯鈦酸鉛(40/60)摻雜Co離子之鐵電性質研究
指導教授: 甘炯耀
Jon-Yiew Gan
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2002
畢業學年度: 90
語文別: 中文
中文關鍵詞: 鐵電薄膜鋯鈦酸鉛疲勞漏電流介電常數
外文關鍵詞: PZT, Co, LCO, dielectric constant
相關次數: 點閱:181下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • PZT薄膜與CMOS整合較容易,製程溫度較低,較高的殘留極化(Pr),但PZT薄膜仍有許多問題尚待解決,如漏電流、疲勞(fatigue)等特性,其中以疲勞最受重視,因為多次的讀寫次數是必要的,若無法克服疲勞性質,實用性將大大的降低。
    本論文採用溶凝膠法旋鍍製作LaCoO3 (LCO)氧化物電極,期望在單獨只有La,Co離子之效果,而無傳統La1-xSrxCoO3(LSCO)氧化物電極之Sr離子情形下,亦可達到疲勞改善之效果,並與PZT中摻雜Co離子(PZTC)做疲勞性質之比較。而疲勞發生的原因可分為鐵電材料本身及鐵電/電極接面兩個因素,所以設計兩種薄膜結構:Pt/PZTC/Pt與Pt/PZTC/PZT/PZTC/Pt,分別探討對鐵電性質之影響。

    Pt/PZT/LCO/Pt之疲勞性質,因氧化物電極之加入,明顯可改善傳統Pt/PZT/Pt抗疲勞性質差之缺點,而鐵電性質之Pr值變小,Ec(Vc)值變大,結晶指向由(111)轉變成(100)(200),漏電流變大,介電常數變小。

    Pt/PZTC/Pt隨著摻雜Co離子之增加,Ps與Pr變小,Vc(Ec)變大,漏電流變大,介電常數變小,散逸因子變大,疲勞性質以摻雜5%Co為最佳,而9%Co則因漏電流大而造成疲勞性質不佳。結晶指向皆為(111),與摻雜Co量無關,主要與熱處理條件有關連。晶粒變得較純PZT為小,而彼此之差異不大。

    Pt/PZTC/PZT/PZTC/Pt隨著摻雜Co離子增加,疲勞性質改善越明顯,以摻雜9%Co最佳,與Pt/PZT/LCO/Pt之疲勞性質接近。隨著摻雜Co離子之增加,Ps與Pr變小,Vc(Ec)變大,介電常數變小,散逸因子變大,漏電流以9%Co為最大。結晶指向皆為(111),與摻雜Co量無關,主要與熱處理條件有關連。晶粒變得較純PZT為小,而彼此之差異不大。


    摘要 誌謝 目錄 表目錄 流程圖目錄 圖目錄 第一章 緒論 …1 1-1 簡介 …1 1-2 研究動機 …2 第二章 文獻回顧 …4 2-1 鐵電特性 …4 2-1-1 鐵電性質 …4 2-1-2 介電性質 …5 2-2鋯鈦酸鉛(PZT)晶體結構與性質 ...7 2-3 鐵電薄膜之製作 ...8 2-4 鐵電材料之特性分析 ..11 2-4-1漏電流機制 ..11 2-4-2 疲勞 (Fatigue) .13 第三章 實驗程序 .16 3-1 Pt/TiO2/SiO2/Si底材之準備 .16 3-2 PZT溶凝膠薄膜之製作 .16 3-2-1.溶膠的製備 .16 3-2-2. 薄膜的旋鍍及熱處理 .17 3-3 Pt上電極的鍍製 .18 3-4 鐵電薄膜性質量測 .19 第四章 結果與討論………………………………………………………………...22 4-1 Pt/PbZr0.4Ti0.6O3/Pt與Pt/PbZr0.4Ti0.6O3/LaCoO3/Pt………………………….22 4-2 PbZr0.4Ti0.6O3與PZTC摻雜1%,5%,9% Co……………………………………26 4-3 Pt/PbZr0.4Ti0.6O3/Pt 與PbZr0.4Ti0.6O3摻雜1%,5%,9% Co 之 Pt/PZTC/PZT/PZTC/Pt異質多層結構成份變化之鐵電性質……………….31 第五章 結論…………………………………………………………………………37 參考文獻…………………………………………………………………………….38 表目錄 表1 鐵電薄膜在記憶元件上應用之需求………………………………………..45 表3-1 下電極TiO2/Pt之鍍膜參數……………………………………………….54 表3-2 上電極Pt之鍍膜參數……………………………………………………..54 流程圖目錄 流程圖3-1 Pt/PZT/Pt鐵電電容製作…………………………………………….55 流程圖3-2 Pt/PZTC/Pt摻雜Co之鐵電電容製作……………………………….56 流程圖3-3 Pt/PZTC/PZT/PZTC/Pt異質結構鐵電電容製作…………………….57 圖目錄 圖1-1 Pt/PZT/Pt鐵電電容示意圖……………………………………………….46 圖1-2 Pt/PZTC/PZT/PZTC/Pt鐵電電容示意圖………………………………….46 圖2-1 典型鐵電材料之電滯曲線(hysteresis loop)…………………………..47 圖2-2 四種極化機構示意圖………………………………………………………47 圖2-3 頻率變化對極化機構的影響圖……………………………………………48 圖2-4 實際電容器的I-V相圖……………………………………………………48 圖2-5 ABO3鈣鈦礦之結晶構造…………………………………………………….49 圖2-6 Ti+4沿C軸之位能變化…………………………………………………….49 圖2-7 PbZrO3-PbTiO3相圖………………………………………………………..50 圖2-8 PZT晶格常數對成分變化情形…………………………………………….50 圖2-9 PbZrO3-PbTiO3比例對機電偶合因子(kp)及介電常數(εr)的影響圖……..51 圖2-10 不同離子對BaTiO3居禮溫度之關係圖………………………………….51 圖2-11 Barrier limited傳導機構(a)Schottky emission(b)tunneling……52 圖2-12 Bulk limited傳導機構(a)空間電荷限制傳導(b)陽離子傳導(c) Poole-Frenkel…………………………………………………………..52 圖2-13 典型PZT鐵電電容之疲勞測試圖………………………………………..53 圖3-1 鐵電薄膜電容量測示意圖…………………………………………………58 圖3-2 RT66A鐵電測試系統之量測單元等效電路圖…………………………….58 圖3-3 RT66A量測P-E遲滯曲線所使用之電壓波形…………………………….59 圖3-4 在疲勞測試期間,以RT66A量測P-E遲滯曲線所使用之脈波序列………59 圖4-1 PZT(40/60)/Pt/SiO2之SEM截面圖……………………………………….60 圖4-2 PZT(40/60)/LCO/Pt/SiO2之SEM截面圖………………………………….60 圖4-3 Pt/PZT/Pt與Pt/PZT/LCO/Pt之X光繞射圖…………………………….61 圖4-4 Pt/PZT/Pt之電滯曲線圖………………………………………………….62 圖4-5 Pt/PZT/LCO/Pt之電滯曲線圖…………………………………………….62 圖4-6 Pt/PZT/Pt 3V寫入5V讀取之疲勞性質………………………………….63 圖4-7 Pt/PZT/LCO/Pt之疲勞性質……………………………………………….64 圖4-8 Pt/PZT/Pt與Pt/PZT/LCO/Pt normalize之疲勞性質比較…………….65 圖4-9 PZT與PZTC摻雜1%,5%,9% Co之X光繞射圖………………………..66 圖4-10 (a)PZT(b)PZTC 1%(c)PZTC 5%(d)PZTC 9%之表面SEM圖………………67 圖4-11 PZT與PZTC摻雜1%,5%,9% Co之電流密度(J)與外加電場(E)圖….68 圖4-12 (a)PZT(b)PZTC 1% Co(c)PZTC 5% Co(d)PZTC 9% Co之電滯曲線圖…69 圖4-13 PZT(40/60),PZTC 1% Co,PZTC 5% Co,PZTC 9% Co 5V量測之電滯 曲線比較圖……………………………………………………………….70 圖4-14 PZT(40/60),PZTC 1% Co,PZTC 5% Co,PZTC 9% Co之(a)Ps(b)Pr (c)Vc比較圖…………………………………………………………….71 圖4-15 PZT(40/60)4V寫入5V讀取之疲勞性質………………………………..72 圖4-16 PZTC摻雜1% Co之疲勞性質…………………………………………….73 圖4-17 PZTC摻雜5% Co之疲勞性質…………………………………………….74 圖4-18 PZTC摻雜9% Co之疲勞性質…………………………………………….75 圖4-19 PZT,PZTC 1%,5%,9% 與Pt/PZT/LCO/Pt於4V寫入5V讀取normalize 之疲勞性質比較………………………………………………………….76 圖4-20 PZT,PZTC 1%,PZTC 5%,PZTC 9% 之介電常數比較………………..77 圖4-21 PZT,PZTC 1%,PZTC 5%,PZTC 9% 之散逸因子比較………………..77 圖4-22 PZT與PZTC/PZT/PZTC摻雜1%,5%,9% Co之X光繞射圖…………..78 圖4-23 (a)PZT(b)PZTC/PZT/PZTC 1% Co(c)PZTC/PZT/PZTC 5% Co (d)PZTC/PZT/PZTC 9% Co之表面SEM圖……………………………….79 圖4-24 PZT與PZTC/PZT/PZTC摻雜1%,5%,9% Co之電流密度(J)與外加電場(E)比較圖……………………………………………………………….80 圖4-25 PZT,PZTC 1%,9% Co與PZTC/PZT/PZTC摻雜9% Co之電流密度(J)與外加電場(E)比較圖…………………………………………………….81 圖4-26 (a)PZT(b)PZTC/PZT/PZTC 1% Co(c)PZTC/PZT/PZTC 5% Co (d)PZTC/PZT/PZTC 9% Co之電滯曲線圖……………………………….82 圖4-27 PZT(40/60),PZTC/PZT/PZTC 1% Co,PZTC/PZT/PZTC 5% Co,PZTC/PZT/PZTC 9% Co 5V量測之電滯曲線比較圖……………………………………….83 圖4-28 PZT(40/60),PZTC/PZT/PZTC 1% Co,PZTC/PZT/PZTC 5% Co, PZTC/PZT/PZTC 9% Co之(a)Ps(b)Pr(c)Vc比較圖…………………..84 圖4-29 PZT(40/60)3V寫入5V讀取之疲勞性質………………………………..85 圖4-30 PZTC/PZT/PZTC 1% Co之疲勞性質……………………………………..86 圖4-31 PZTC/PZT/PZTC 5% Co之疲勞性質……………………………………..87 圖4-32 PZTC/PZT/PZTC 9% Co之疲勞性質……………………………………..88 圖4-33 PZT,PZTC/PZT/PZTC 1%,5%,9% Co與Pt/PZT/LCO/Pt於3V寫入5V讀取normalize之疲勞性比較………………………………………….89 圖4-34 PZT,PZTC/PZT/PZTC 1% Co,PZTC/PZT/PZTC 5% Co, PZTC/PZT/PZTC 9% Co之介電常數比較……………………………….90 圖4-35 PZT,PZTC/PZT/PZTC 1% Co,PZTC/PZT/PZTC 5% Co, PZTC/PZT/PZTC 9% Co之散逸因子比較……………………………… 90 圖4-36 PZT,PZTC 1%,9% Co與PZTC/PZT/PZTC摻雜9% Co之之介電常數比 較圖……………………………………………………………………….91

    1.J. F. Scott and C. A. Pazde Araujo,“Ferroelectric Memories , Science, 246,(1989)1400.
    2.G. H. Haertling, “Ferroelectric Thin Film for Electronic Applications”,J. Vac.Sci. Tech.,A9(3),(1991)414.
    3.J. F. Scott,C. A. P. de Araujo,L. D. McMillan,H. Yoshimori,H. Watatnade,T. Mihara,M. Azuma,T. Ueda,D. Ueda,and G. Kano, “Ferroelectric Thin Films in Integrated Microelectric Devices”,Ferroelectrics,133,(1992)47.
    4.L. M. Sheppard, “Advances in Processing of Ferroelectric ThinFilms” , Ceram.Bull., 71(1),(1992)85.
    5.林諭男 , “強介電陶瓷薄膜的應用 ” , 工業材料 , 107,(1995)49
    6.E.k.Muller, B.J.Nichlson and G.E.Tuener, J. Electrochem. Soc., 110, 69(1963)
    7.A.E.Feuersanger, A.K.Hanenlocher and A.L.Solonam, J. Electronchem. Soc., 111,1987
    8.I.H.Patt and S.Fireston, J.Vac.Sci.Technol 8,256(1971)
    9.W.J.Takei,N.P.Formigoni and M.H.Francombe,J. Vac. Sci Technol 7,442 (1969)
    10.G.A.C.M. Spierings, M.J.E.Ulenaers,G.L.M.Kampschoer, H.A.M.van Hal, and P.K.Larsen,”Preparation and Ferroelectric Properties of PbZr0.53Ti0.47O3 Thin Film by Spin Coating and Metaloranganic Decomposition”, J.Appl.- Phys.,70(4),(1991)2290
    11.C.D.E.Lakeman and D.A.Payne, “Processing Effects in the Sol-Gel Prepa- ration of PZT Dried Gels, Powders, and Ferroelectric Thin Layers”, J.Am.Ceram.Soc. ,75(11),(1992)3091
    12.M.Kojima,M.Okayama, T.Nakagawa and Y.Hamakawa, Jap. J. Appl. Phys.,22,14(1983)
    13.M.Okada,S.Takai,M.Amemya and K.Tominaga,Jap. J. Appl. Phys,28, 1030, (1989)
    14.L.H. Hamedi, M. Guilloux-viry, A. Perrin , M.H,Cherkani “on the epitaxial growth of PZT films by pulsed Laser deposition” Ann. Chim. Sci. Mat, 1998, 23, pp.377-380
    15.Byung-Eun Park,Ikuo Sakai,Eisuke Tokumitsu ,Hiroshi Ishiwara ,” Hys- teresis characteristics of vacuum-evaporated ferroelectric PbZr0.4Ti0.6O3 films on Si(111) substrates using CeO2 buffer layers, Applied Surface Science 117/118(1997)423-428
    16.C. W. Law, K. Y. Tong, J. H. Li, K. Li, M. C. Poon, “Effect of Oxygen Content and Thickness of Sputtered RuOxElectrodes on the Ferroelectric and Fatigue Properties of Sol-Gel PZT Thin Film”,Thin Solid Film,354,(1999) 162
    17. H. N. Al-Shareef, B. A. Tuttle, W. L. Warren, T. J .Headly, D. Dimos, J. A. Voigt and R. D. Nasby,”Effect of B-Site Cation Stoichiometry on Electrical Fatigue of RuO2/Pb(ZrxTi1-x)O3/RuO2 Capacitors”, J. Appl. Phys. ,79(2), (1996) 1013
    18.Ming-Sen Chen, Tai-Bor Wu, and Jenn-Ming Wu,” Effect of textured LaNiO3 electrode on the fatigue improvement of Pb(Zr0.53Ti0.47)O3 thin films ”, Appl. Phys. Lett. , 68(10),4 (1996) 1430-1432
    19.X.J. Meng, Z.X. Ma,J.L. Sun, L.X. Bo, H.J. Ye, S.L. Guo, J.H. Chu,”Highly oriented PbZr0.3Ti0.7O3 thin film on LaNiO3-coated Si substrate derived from a chemical solution technique”, Thin Solid Films 372 (2000) 271-275
    20.R. Ramesh, H. Gilchrist, T. Sands, and V. G. Keramidas, R. Haakenaasen and D.K. Fork,”FerroelectricLaSrCoO/PbZrTiO/LaSrCoO heterostructures on silicon via template growth”, Appl. Phys. Lett. , 63(26),27 (1993) 3592-3594
    21.R. Dat, D. J. Lichtenwalner, O. Auciello, and A. I. Kingon,”Polycrystalline La0.5Sr0.5CoO3/PbZr0.53Ti0.47/La0.5Sr0.5CoO3 Ferroelectric Capacitors on Platinized Silicon with No Polarization Fatigue”, Appl. Phys.Lett , 64(20),(1994) 2673
    22.Q. Y. Jiang, E. C. Subbarao, and L.E. Cross,”Effect of composition and temperature on electric fatigue of La-doped lead zirconate titanate ceramics”,J. Appl. Phys., 75(11), (1994) 7433
    23.S. R. Shannigrahi and Hyun M. Jang,”Fatigue-free lead zirconate titanate-based capacitors for nonvolatile memories”, Appl. Phys. Lett.,Vol. 79, No. 7, 13 August 2001
    24.梁春昇, “氧化物電極上PZT薄膜之製備及特性研究”, 清華大學, 碩士論文, (2001)
    25.趙國欽, “鋯鈦酸鉛鐵電薄膜漏電流及疲勞性質之研究”,清華大學,碩士論文, (1997)
    26.Milton Ohring ,”The Material Science and Thin Films”,.Academic Press ,p464-472
    27.李雅明,”固態電子學”, 全華出版社,1995年5月,p413
    28.W. H. Shepherd, “Fatigue and Aging in Sol-Gel Derived PZT thin films”, Mat. Res. Soc. Symp. Proc. Vol. 200,(1990) 277
    29.H.M. Duiker, P.D.Beale, and J. F. Scott, “Fatigue and Switching in Ferroelectric Memories:Theory and Experiment”, J. Appl. Phys., 68(11), (1990) 5783
    30.J. F. Scott and B. Pouligny, “Raman spectroscopy of Submicron KNO3 Films.II. Fatigue and Space-Charge Effect”, J. Appl. Phys., 64(3), (1998) 1547
    31.D. J. Johnson, D. T. Amw, E. Griswold, K. Sreenivas, G. Yi. and M. Sayer,”Measuring Fatigue in PZT thin films”, Mat. Res. Soc.Symp. Proc Vol.200,(1990) 289
    32.W. Pan, C. F. Yue and S. Sun,”Domain orientation change induced by ferroelectric fatigue procedd in lead zirconate titanate ceramics”,University-Sandia Research Proposal Grants,P97-102
    33.San-Yuan Chen and Chia-Liang Sun,”Ferroelectric characteristics of oriented Pb(Zr1-xTix)O3 films”, J. Appl. Phys., Vol. 90, No. 6, 15 (2001) 2970-2974
    34.Woo Sik Kim, Jun-Kyu Yang, Hyung-Ho Park,”Influence of preferred orientation of lead zirconate titanate thin film on the ferroelectric properties”, Applied Surface Science 169-170 (2001) 549-552
    35.S. B. Majumder, B. Roy, and R. S. Katiyar, S. B. Krupanidhi,”Effect of neodymium (Nd) doping on the dielectric and ferroelectric characteristics of sol-gel derived lead zirconate titanate (53/47) thin films”, J. Appl. Phys., Vol. 90, No. 6, 15 (2001) 2975-2984
    36.Q.Zou , H. Ruda , B.G. Yacobi , M. Farrell ”Microstructural characterization of donor-doped lead zirconate titanate films prepared by sol-gel processing”,Thin Solid Films 402(2002)65-70
    37.吳泰伯,許樹恩“X光繞射原理與材料結構分析”,中國材料科學學會
    38.顏宇欣, “電極與膜厚對(TiO2)x-(Ta2O5)1-x電容之影響”,清華大學,碩士論文, (1998)
    39.Woo Sik Kim, Soon-Mok Ha, Hyung-Ho Park, Chang Eun Kim,”The effects of cation-substitution on the ferroelectric properties of sol-gel derived PZT thin film for FRAM application”, Thin Solid Films 355-365 (1999) 531-535
    40.陳佳麟, “鋯鈦酸鉛(PZT)薄膜電容器可靠性之研究”,清華大學,碩士論文, (1996)
    41.Wan In Lee and June key Lee,” Dopant effects on the grain structure and electrical property of PZT thin films prepared by sol-gel process”, Material Research Bulletin,Vol.30, No. 10,1185-1191, 1995
    42.李元亨,“鋯鈦酸鉛鐵電薄膜電容檢測與分析”,清華大學,碩士論文, (1998)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)

    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE