簡易檢索 / 詳目顯示

研究生: 彭琪鈺
Chih-Yu Peng
論文名稱: 氣泡於圓柱容器中上升之數值模擬研究
Numerical Simulation of a Bubble-Rising in a Vertical Cylindrical Container
指導教授: 李雄略
Shong-Leih Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 58
中文關鍵詞: 表面張力數值模擬兩相流氣泡流場壓力場微流道
外文關鍵詞: surface tension, numerical simulation, two-phase flow, bubble, flow field, pressure field, micro channel
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於氣泡生成的問題以及在微流道中流動的情形,在微機電系統中應用層面相當廣泛,深具發展潛力,且在微尺度的狀況下,用實驗觀察也相對比較困難,所以數值模擬方法越顯重要,若兩者能相互搭配,互相印證,則可對問題作更深入的了解。
    本文的目的是以數值方法研究單一氣泡在圓柱容器中上升時所引發的周圍流場,以及氣泡的上升速度,觀察氣泡由不穩定到抵達終端速度時穩定的情形,並比較不同尺寸下,氣泡上升的過程有哪些不同。
    本研究希望能對氣泡動力學作精準的分析,以單一氣泡的物理情形作基準,以期望將來能模擬二相流內氣泡的成形與移動機制,將此資訊提供給各領域的相關人才,設計出更完善且符合需求的產品,使得機構能正常運作。


    摘要 誌謝 目錄 表目錄 圖目錄 符號說明 第一章 緒論 1 1.1前言 1 1.2文獻回顧 2 1.3目的 6 第二章 理論分析 7 2.1問題描述 7 2.2統御方程式 8 2.3邊界條件 10 第三章 數值方法 15 3.1統御方程式之差分 16 3.2流場與壓力場的簡化處理 19 3.3利用NAPPLE求解壓力場 20 3.4自由液面的位置與速度 23 3.5計算流程 25 第四章 結果與討論 26 4.1模擬參數 26 4.2流場與壓力場 28 4.3 Bo與氣泡上升時終端速度的關係 30 4.4 因次化結果 32 第五章 結論 34 參考文獻 35 附錄A 圓柱座標動量方程式差分 37 附錄B Extended weighting function scheme之推導 41 附錄C 壓力連結方程式於自由液面之修正 44 附表 47 附圖 48

    [1] Hnat, J. G., and Buckmaster J. D., “Spherical cap bubbles and skirt formation,” The Physics of Fluids, Vol.19, pp.182-194, 1976.

    [2] Hassan, Y. A., Blanchat, T. K., Seeley Jr, C. H., and Canaan, R. E., “Simultaneous velocity measurements of both components of a two-phase flow using particle image velocimetry,”International Journal of Multiphase Flow, Vol.18, pp.371-395, 1992.

    [3] Makoto, Y., Tomomasa, U., Noriyoshi, Y., and Mamoru, O., “Motion Measurement of Rising Bubble Trains in Cylindrical Pipe,”The Eleventh International Symposium on Transport Phenomena, No.71, pp.441-445, 1998.

    [4] Unverdi, S. O., and Tryggvason, G.,“A front-tracking method for viscous, incompressible, multi-fluid flows,” Journal of Computational Physics, Vol.100, pp.25-37, 1992.

    [5] Hirt, C. W., and Nichols, B. D.,“Volume of fluid (VOF) method for the dynamics of free boundaries,”Journal of Computational Physics, Vol.39, pp.201, 1981.

    [6] Tomiyama, A., un, I., Higaki, H., Makino, Y., and Sakaguchi, T.,“A three-dimensional particle tracking method for bubbly flow simulation,”Nuclear Engineering and Design, Vol.175, pp.77-86, 1997.

    [7] Ginzburg, I., and Wittum, G.,“Two-Phase Flow on Interface Refined Grids Modeled with VOF, Staggered Finite Volunes, and Spline Interpolants,”Journal of Computational Physics, Vol.166, pp.302-335, 2001.

    [8] Li, Y., Zhang, J., Fan, L. S.,“Discrete-phase simulation of single bubble rise behavior at elevated pressures in a bubble column,”Chemical Engineering Science, Vol.55, pp.4597-4609, 2000.

    [9] Sussman, M., Pukett, E. G.,“A Coupled Level Set and Volume-of-Fluid Method for Computing 3D and Axisymmetric Incompressible Two-Phase Flow,”Journal of Computational Physics, Vol.162, pp.301-337, 2000.

    [10] Takada, N., Misawa, M., Tomiyama, A., Fujiwara,“Numerical simulation of two- and three-dimensional two-phase fluid motion by lattice Boltzmann method,” Computer Physics Communications, Vol.129, pp.233-246, 2000.

    [11] Lee, S. L., and Sheu, S.R.,“ A new numerical formulation for incompressible viscous free surface flow without smearing the free surface,”International Journal of Heat and Mass Transfer, Vol.44, pp.1831-1848, 2001.

    [12] Sarpkaya, T., “Vorticity, free surface and surfactants,“ Annual Review of Fluid Mechanics, Vol.28, pp.83-128, 1996.

    [13] Tsai, W. T., and Yue, D. K. P., “Computation of nonlinear free-surface flows,” Annual Review of Fluid Mechanics, Vol.28, pp.249-278, 1996.

    [14] Lee, S. L.,“ Weighting function scheme and its application on multidimensional conservation,”International Journal of Heat and Mass Transfer, Vol.32, pp.2065-2073, 1989.

    [15] Lee, S. L., and Tzong, R. Y.,“ An enthalpy formulation for phase change problems with a large thermal diffusivity jump across the interface,”International Journal of Heat and Mass Transfer, Vol.34, pp.1491-1502, 1991.

    [16] Lee,S. L., and Tzong, R. Y.,“Artificial pressure for pressure-linked equation,”International Journal of Heat and Mass Transfer, Vol.35, pp.2705-2716, 1992.

    [17] Lee, S. L., “A strongly-implicit solver for two-dimensional elliptic differential equations,”Numerical Heat Transfer, Vol.16, pp.161-178, 1989.

    [18] Lancaster, P., and , K., Curve and Surface Fitting, pp.101-111, 1986.

    [19] Richard, L. Burden, and J., Douglas, Faires, Numerical analysis, 7th, pp.141-152, 2001.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE