摘要
Zr的原子尺寸較大,常被用來做為傳統塊狀金屬玻璃的主要元素,所以Zr含量對十元AlCoCrCuFeMoNiTiVZrx高熵合金微結構的影響,是本研究的主要目的。
實驗顯示,從水冷銅模電弧熔煉及冷卻速率更快的熔旋製程所得合金塊材與薄帶,均顯示合金為結晶結構。塊材及薄帶的微結構主要均由樹枝相及樹枝間相組成。在十元等莫耳高熵合金塊材中,樹枝相為單晶BCC,樹枝間相為多晶BCC與FCC,而FCC多晶相的其中一種為富Cu奈米析出。
由X射線繞射譜及掃瞄式電子顯微鏡結果,合金冷卻過程中,不見介金屬相。顯示ΔH的影響小。合金主要為固溶體相構成。其固化先後次序,大抵依相的熔點(液相線溫度)高低排列。
十元AlCoCrCuFeMoNiTiVZrx高熵合金塊材中, x = 0塊材的硬度最低,但抗蝕性最佳;x = 1塊材的硬度最高,但抗酸蝕不及x = 0塊材。隨著Zr增量,抗蝕性會降低。
薄帶合金樹枝臂間距小,施以800℃和1000℃熱處理,以期得到均一相。熱處理後的薄帶試片其X射線繞射譜仍未有均一相的繞射花樣。顯示1000℃熱處理仍達不到均質化的目的。
6、參考文獻
1.A. Inoue, K. Kita, T. Masumoto, K. Ohtera, Japanese Journal of Applied Physics Part 2-Letters, 27 (1998) 1796.
2.A. Inoue, K. Kita, T. Masumoto, T. Zhang, Materials Transactions, JIM, 30 (1989) 722.
3.A. Inoue-A, T. Zhang, T. Masumoto, Materials Transactions, JIM, 31 (1999) 177.
4.A. Inoue, T. Masumoto, U.S. Patent No. 5,032,196, Japanese Patent 07-122120.
5.A. Peker, W. L. Johnson, Applied Physics Letters, 63 (1993) 2342.
6.A. Inoue, T. Zhang, K. Ohba, T. Shibata, Materials Transactions, JIM, 36 (1995) 876.
7.A. Inoue, J. S. Gook, Materials Transactions, JIM, 36 (1995) 1282.
8.A. Inoue, N. Nishiyama, T. Matsuda, Materials Transactions, JIM, 37 (1996) 181.
9.Y. He, T. D. Shen, R. B. Schwarz, Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 29 (1998) 1795.
10.T. Zhang, A. Inoue, Materials Transactions, JIM, 39 (1998) 1001.
11.A. Inoue, T. Zhang, Materials Transactions, JIM, 31 (1999)177.
12.A. Inoue, T. Zhang, A. Takeuchi, Applied Physics Letters, 71 (1997) 464.
13.A. Inoue, T. Nakamura, N. Nishiyama, T. Masumoto, Materials Transactions, JIM, 33 (1992) 937.
14.A. Inoue, T. Nakamura, T. Sugita, T. Zhang, T. Masumoto, Materials Transactions, JIM, 34 (1993) 351.
15.A. Inoue, T. Zhang, Materials Transactions, JIM, 37 (1996) 185.
16.A. Inoue, N. Nishiyama, H. Kimura, Materials Transactions, JIM, 38 (1997) 179.
17.A. Inoue, Bulk Amorphous Alloys, 2, Trans. Tech. Publications, Zurich, 28 (1999).
18.A. Inoue, N. Nishiyama, Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing, 226, Jun. (1997) 401.
19.D. V. Louzguine, A. Inoue, Materials Letters, 39 (1999) 211.
20.L. Q. Xing, C. Bertrand, J. P. Dallas, M. Cornet, Materials Science and Engineering, A214 (1998) 216.
21.黃國雄,“等莫耳比多元合金系統之研究,”國立清華大學碩士論文 (1996)。
22.賴高廷,“高亂度合金微結構及性質探討,”國立清華大學碩士論文 (1998)。
23.許雲翔,“以FCC及BCC元素為劃分配製等莫耳多元合金系統之研究,”國立清華大學碩士論文 (2000)。
24.洪育德,“Cu-Ni-Al-Co-Cr-Fe-Si-Ti高亂度合金之探討,”國立清華大學碩士論文 (2001)。
25.P. Haasen, Metallic Glasses, Journal of Non-Crystalline Solids, 56, 1-3 (1983) 191.
26.H. S. Chen, H. J. Leamy and C. E. Miller, Annual Review of Materials Science, 10 (1980) 363.
27.H. Jones, Rapid Solidification of Metals and Alloys, Institute of Metallurgists, London (1982).
28.F. G. Yost, Journal of Materials Science, 16 (1981) 3039.
29.W. Klement, R.H. Willens, P. Duwez, Nature 187 (1960) 869.
30.川合 知二,圖解奈米科技,工業技術研究院奈米科技研發中心,新竹 (2002)。
31.D. Turnbull, J.C. Fisher, Journal of Chemical Physics 17 (1979) 71.
32.P. Duwes, Transactions of American Society for Metals, 60 (1967) 607.
33.程天一,快速凝固技術與新型合金,宇航出版社,北京 (1990)。
34.黃森煥,金重勳, “快速凝固法研製稀土-過渡元素合金及其基本特性探討,”國立清華大學博士論文 (1990)。
35.H., Scholze, Glas, Springer Verlag, Berlin-Heidelberg-New York, (1977) 125.
36.H., Scholze, Glas, Springer Verlag, Berlin-Heidelberg-New York, (1979) 125.
37.Z.F. Zhao, Z. Zhang, P. Wen, M.X. Pan, D.Q. Zhao, W.H. Wang, Applied Physics Letters 82 (2003).
38.A.L. Drehman, A.L. Greer, L. Turnbull, Applied Physics Letters. 41 (1982) 716.
39.W.H. Kui, A.L. Greer, D. Turnbull, Applied Physics Letters 45 (1984) 615.
40.A. Inoue, T. Zhang, T. Masumoto, Materials Transactions, JIM 30 (1989) 965.
41.A. Inoue, Acta Materials, 48 (2000) 279.
42.A. Inoue, T. Zhang, N. Nishiyama, K. Ohba, T. Masumoto, Materials Transactions, JIM 34 (1993) 1234.
43.W.L. Johnson, MRS Bulletin, 24 (1974) 1505.
44.張家維, “十元奈米高熵合金鑄造微結構及特性分析,” 國立清華大學碩士論文 (2004)。
45.F.R. de Boer, R. Bo光學顯微鏡, W.C.M. Matterns, A.R. Miedema, A.K. Niessen, Cohesion in Metals Transition Metal Alloys, North-Holland Physics Publishing, New York (1988).