簡易檢索 / 詳目顯示

研究生: 蘇文達
Wen-Ta Su
論文名稱: 微米構形環境下細胞行為之研究
Research of cell behavior on micro-textured substrate
指導教授: 朱一民
I-Ming Chu
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 110
中文關鍵詞: 微米構形纖維母細胞
外文關鍵詞: micro, texture, fibroblast
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要目的是利用電子工業微製造技術所製作的微米構形材料來探討細胞生長情形,並用構形反應器來增殖人類造血幹細胞的數目。
    我們利用30 □m深,15~100 □m不等寬度微溝槽構形的疏水性PDMS膜在37℃含血清的培養液中,探討老鼠間質細胞的遷移行為。以time-lapse相位差顯微鏡持續25h觀察細胞形態與移動位置的變化。當細胞種入時,大部分的細胞都沉入凹槽內,隨即在材料表面貼附與展延,並往凹槽側面移動,在凹槽/凸脊間不斷地爬上爬下,顯然這30 □m深的落差,並不會造成細胞移動上的障礙,最後大部分的細胞以單層貼附群聚在凸脊上,因接觸抑制而停止增殖。細胞形狀也因溝槽構形而被拉長與溝槽方向平行,形狀指標(FI)是平面上的2.6倍,從移動速率來看,疏水性的表面比親水性表面更能驅動細胞的遷移,移動速率也較快。
    當纖維細胞生長在柱狀構形材料上,細胞改變了貼附模式,焦點接觸,細胞骨架重排,細胞形態與移動的方向。所用柱狀構形是直徑1□m,間距3□m或9□m,1□m;5□m;10□m等3種高度的方型排列圓柱,具有相同的表面化學性質。柱狀構形能提供更多細胞貼附的機會,但也是一種限制細胞移動的障礙。當細胞種入時會被一根或數根柱子撐著但沒有刺破細胞,有些細胞則沉入柱子間隙,因而固定了貼附的位置,隨後細胞質膜向外沿著柱子側面貼附往材料底部延伸,形成細長的細胞質膜。Si-1-9基材上的細胞形狀指標是3.7,但 Si-1-3基材上則高達35,是平面上培養細胞的23.6倍。另一個評估細胞形狀變化的指標是細胞高度,構形基材上的細胞在z軸分布的高度是平面上的3.6倍。在細胞移動上,多數的細胞都往同一方向延伸,有些則同時往x與y的方向延伸,形成相當有趣的細胞形態,像是阿拉伯數字7與英文字母Y的字形,這些變化趨勢與柱子高度成正比。因此材料表面的構形會強烈地影響細胞的形態與展延的方向。
    我們設計微柱狀反應器模擬體內骨髓微環境,對造血幹細胞作體外增殖培養。首先將老鼠骨髓中培養出的間質細胞( M2-10B4 )種入反應器內當作飼養層細胞,提供一些細胞激素調節造血幹細胞生長。經過21天的培養,在微柱狀反應器中造血幹細胞增殖數目是平面培養的3.69倍,累積的菌落形成能力是平面培養的2.1倍。這些結果顯示微構形基材對造血幹細胞體外增殖培養是有效的,可歸因於柱狀構形基材較能提供適當的細胞與細胞、細胞與胞外基質的互動,因而加速細胞的生長。


    The aims of this thesis are to explore the cell behavior on micro-textured substrate by microfabrication techniques and to proliferate hematopoietic stem cells (HSCs) in topographic reactor thereafter.
    We used a hydrophobic micro-grooved poly-dimethylsiloxane (PDMS) in medium with 10% FBS at 37℃ to study the motility of mouse stromal fibroblast on variant (15~100 □m) parallel ridge/groove with 30 □m depth. We observed the temporal changes in cell morphology and locomotion by using time-lapse phase-contrast microscopy for 25h. When fibroblasts were seeded onto the micro-grooved substrate, almost all of cells concentrated at the bottom of the grooves. Sequentially, the fibroblasts attached and spread out on the surface, migrated toward the walls of the grooves, climbed up and down the ridges. Apparently, the 30 □m depth of groove was not an obstacle, while cells migrated across the microgrooves. Eventually, they stopped proliferation as a result of contact inhibition and formed a confluent monolayer on the ridges with an orientation parallel to the direction of the ridge/groove. That is to say, cellular motility was directed to the top ridges. Cellular shape of fibroblast was enhanced with the microgrooves, the form index (FI) of nucleus was 2.6-fold greater than that of cells on smooth surfaces. Further, from the velocity of cellular moving,hydrophobic surfaces are more prone to direct cellular motility in comparison with hydrophilic surfaces.
    Fibroblasts alter their mode of attachment, focal contact, cytoskeleton arrangement, cellular shape and direction of movement, when placed on square arrays of silicon pillars. All of the pillars that we studied had 1-μm diameters with identical surface chemistry, and were separated by 3 μm and 9 μm, but with different heights (1, 5, or 10 μm). We found that these micro-pillars provided more opportunities for mechanical interlocking of the fibroblasts, rather than specific interactions, and acted as physical barriers that restrain cell migration. When cells were seeded initially on pillar substrate, fibroblasts subsequently were immobilized in situ by one or some pillars that visibly protruded into the cell body, but did not pierce; while some fibroblasts were filled in the intervals between four pillars. Subsequently, cytoplasma migrated outward to the bottom of substrate with long straight lamella along the interval of the pillars and formed several discrete attachment zones at their side walls. The maximal form index (FI) of the cells on the Si-1-9 pillar substrate was 3.7, but form index (FI) was as high as 35 (ca. 23.6-fold greater than that of cells on smooth surfaces) on Si-1-3-10 pillar substrate. Changes were observed in cellular body height, there was 3.6-fold increase in cell height on pillar substrate than that of conventional planar-cultured substrates. Therefore pillar substrate altered the cellular shape entirely. On cellular migration, most of the cells interacted with the pillar substrate by spreading preferentially in a particular direction, but some of them had the ability to undergo coincident two-direction (x and y) migration; right-angle turn orientations led to the growth of dramatic cellular morphologies, for example, the morphology of an Arabic numeral 7 and a letter of Y-shaped structure. Interestingly, this fibroblast’s behavior variation was proportional to the pillar height of substrate. Our results confirm that cellular migration and cellular shape are both strongly affected by the geometry of the growth microenvironment.
    We designed micro-pillar reactor to mimic in vivo bone marrow microenvironment and ex vivo expansion of hematopoietic stem cells. Firstly, mouse-derived bone marrow stromal cells (M2-10B4) were seeded on pillar reactor as a feeder layer to provide some cytokines that regulate hematopoiesis. After 21d culturing, the cell expansion was 3.69-fold and accumulative CFUs was 2.1-fold higher on micro-pillar reactor than that of T25 flask culture. These results suggest that micro-textured substrate enhances the expansion of hematopoietic stem cells and pillar substrate may promote proper cell-cell interactions and cell-ECM interactions.

    第一章 研究動機與目的 1 1.1 動機與目的 1 1.2 研究架構 3 第二章 文獻回顧 5 2.1構形材料培養細胞的歷史 5 2.2細胞與構形材料的互動行為 9 2.2.1細胞接觸與貼附 9 2.2.2細胞延伸與遷移 13 2.2.3細胞形態的重要性 19 2.3微米材料之微製造技術 20 2.3.1光蝕刻顯影法 22 2.3.2軟蝕刻顯影法 24 2.3.3培養基材的選擇 26 2.4人類造血幹細胞體外增殖培養 28 第三章 實驗步驟、設備與材料 32 3.1 動物細胞培養之基本技術 32 3.2 細胞株和細胞培養 32 3.2.1 細胞株來源 32 3.2.2 例行性細胞培養 33 3.3 材料製作 34 3.3.1 光罩繪圖 34 3.3.2 矽晶片蝕刻 35 3.3.3 PDMS 聚合成型 36 3.3.4 柱狀反應器製作 37 3.4 不同基材的細胞接種培養與觀察測量 38 3.4.1 groove-ridge PDMS 38 3.4.1.1 培養箱靜態培養 38 3.4.1.2 顯微鏡上time-lapse培養 38 3.4.1.3 細胞核與細胞骨架螢光染色 38 3.4.2 直徑1□m柱狀構形矽晶片 39 3.4.3飼養層細胞的培養 40 3.4.4造血幹細胞的培養 40 3.5驗儀器與材料 42 3.6實驗藥品 43 第四章 結果與討論 44 4.1微構形基材的表面特性 44 4.1.1溝槽構形的表面特性 44 4.1.2柱狀構形的表面特性 45 4.1.3柱狀構形PDMS反應器的表面特性 46 4.2細胞生長行為觀察 46 4.2.1 溝槽構形 46 4.2.1.1 纖維母細胞形態觀察 46 4.2.1.2 纖維母細胞遷移與速度測定 49 4.2.2 柱狀構形 52 4.2.2.1 纖維母細胞在Si-1-9基材上生長的觀察 52 4.2.2.2 纖維母細胞在Si-1-3基材上生長的觀察 55 4.3 柱狀反應器內造血幹細胞的增殖 59 4.4 其他細胞在構形材料上的形態變化 60 第五章 結論與未來展望 89 5.1結論 89 5.2未來展望 91 第六章 參考文獻 93 附錄一 作者簡介 105 附錄二 著作 106 附錄三 氧氣質量傳導模式 108

    1. Curtis, A., Wilkinson, C., 1998. Cell behavior on micropatterned surface. J. Biomater. Sci. Polym. 9, 1313-1329
    2. Maoudas, N.G., 1975. Adhesion and spreading of cells on charged surfaces. J. Theor. Biol. 49, 417-424
    3. Maoudas, N.G., 1977. Sulphonated polystyrene as an optimal substratum for the adhesion and spreading of mesenchymal cells in monovalent and divalent saline solutions.J. Cell Physiol. 90, 511-520
    4. Mooney, D., Hansen, L., Vacanti, J., 1991. Switching from differentiation to growth in hepatocytes: control by extracellular matrix. J.Cell Physiol. 151, 497-505
    5. Ramsey, W.S., Hertl, W.,Nowlan, E.D., 1984. Surface treatment and cell attachment. In Vitro 20, 802-808
    6. Maroudas, N.G.., 1979. On the low adhesiveness of fluid phospholipids substrata. J. Theor. Biol. 79. 101-116
    7. Maroudas, N.G., 1972. Anchorage dependence: correlation between amount of growth and diameter of bead, for single cells grown on individual glass beads. Exp. Cell Res. 74, 337-342
    8. Brunette, D.M., 1988. The effects of implant surface topography on the behavior of cells. Int.J. Oral Maxillofac. Implants. 3, 231-246
    9. Scotchford, C. A., Cooper, E., Leggett, G. J., Downes, S., 1998. Growth of human osteoblast-like cells on alkanethiol on gold self-assembled monolayers: the effect of surface chemistry. J. Biomed. Mater. Res. 41, 431-442.
    10. Scotchford, C. A., Gilmore, C. P., Cooper, E., Leggett, G. J., Downes, S., 2002. Protein adsorption and human osteoblast-like cell attachment and growth on gold self-assembled monolayers. J. Biomed. Mater. Res. 59, 84-89.
    11. Scotchford, C. A., Ball, M., Winkelmann, M., Voros, J., Csucs, C., Brunette, D. M., Danuser, G., Textor, M., 2003. Chemistry patterned, metal-oxide-based surfaces produced by photolithographic techniques for studying protein- and cell-interactions. II: Protein adsorption and early cell interactions. Biomaterials 24, 1147-1158.
    12. Tan, J., Shen, H., Carter, K. L., Saltzman, W. M., 2000. Controlling human polymorphonuclear leukocytes motility using microfabrication technology. J. Biomed. Mater. Res. 51, 694-702.
    13. Turner, A. M. P., Dowell, N., Turner, S. W. P., Kam, L., Isaacson, M., Turner, J. N., Craighead, H. G., Shain, W., 2000. Attachment of astroglial cells to microfabricated pillar arrays of different geometries. J. Biomed. Mater. Res. 51, 430-441.
    14. Raghavan, S., Chen, C. S., 2004. Micropatterned environments in cell biology. Adv. Mater. 16, 1303-1313.
    15. Harrison, R. G., 1911. The reaction of embryonic cells on solid surface. Science 34, 279-281
    16. Curtis, A.S.G..Varde, M. J., 1964. Contact guidance in curve substrate. Natl Cancer Res Inst. 33, 15-18
    17. Weiss, P., 1945. Experiments on cell and axon orientation in vitro: the role of colloidal exudates I tissue organization. J. Exp. Zoo. 100, 353-386
    18. Meyle, J., Gutlig, K., Nisch W., 1995. Variation in contact guidance by human cells on a microstructured surface. J Biomed Mater Res. 29, 81-88
    19. Hoch, H.C., Staples, R.C., Whitehead, B., Comeau, J., Wolf, E.D., 1997. Signaling for growth orientation and cell differentiation by surface topography in Uromyces.Science. 235, 1659-1662
    20. Clark, P., Connolly, P., Curtis, A.S.G., Dow, J.A.T., Wilkinsin, C.D.W., 1987. Topographical control of cell brhavior.I.Simple step cues. Development 99, 439-448
    21. Green, A.M., Jansen, J.A., ven der Waerden, J.P.C.M., von Recum, A.F., 1994. Fibroblast response to microtextured silicon surfaces:texture orientation into or out of the surface. J Biomed Mater Res. 28, 647-653
    22. Campbell, C.E., Von Recum, A.F., 1989. Microtopography and soft tissue response. J Invest Surg. 2, 51-74
    23. Weiss, P., 1958. Cell contact. Int. Rev. Cytol. 7, 391-423
    24. Rovensky, Y.A., Slavnaja, I.L., Vasiliev, J.M. 1971. Behavior of fibroblast-like cells on grooved surfaces, Exp. Cell Res. 65, 193-201
    25. Rovensky, Y.A., Slavnaja, I.L. 1974. Spreading of fibroblast-like cells on grooved surfaces. Exp.Cell Res. 84, 199-206
    26. Ohara. P.T., Buck, R.C., 1979. Contact guidance in vitro. Exp. Cell Res. 121, 235-249
    27. Brunette, D.M., 1986. Fibroblasts on micromachined substrata orient hierarchically to grooves of different dimensions. Exp. Cell Res. 164, 11-26
    28. Brunette, D.M., 1986. Spreading and orientation of epithelial cells on grooved substrata. Exp. Cell Res. 167, 203-217
    29. Kenner, G.S., Gould, T.R.L., 1983. Grooved titanium surfaces orient growth and migration of cells from human gingival explants. J. Dent.Res. 62, 1045-1048
    30. Chehroudi, B., Gould, T.R.L., Brunette, D.M., 1990. Titanium-coated micromachined grooves of different dimensions affect epithelial and connective-tissue cells differently in vitro. J. Biomed. Mat. Res. 24, 1203-1219
    31. Chehroudi, B., Gould, T.R.L., Brunette, D.M., 1992. The role of connective tissue in inhibiting epithelial downgrowth on titanium-coated percutaneous implants. J. Biomed. Mat. Res. 26, 493-515
    32. Dunn, G.A. Brown, A.F., 1986. Alignment of fibroblasts on grooved surfaces described by a simple geometric transformation. J.Cell Sci. 83, 313-340
    33. Wood, A., 1988. Contact guidance on microfabrication substrata:the response of teleost fin mesenchyme to repeating topographical patterns. J. Cell Sci. 90, 667-681
    34. Meyle, J., von Recum, A.F., Gibbesch, B., 1991. Fibroblast shape conformation to surface micromorphology.J. Appl. Biomat. 2, 273-276
    35. Clark, P., Connolly, P., Curtis, A.S.G.., 1987. Topographical control of cell behavior:I. Simple step cues. Development 99, 439-448
    36. Clark, P., Connolly, P. Curtis, A.S.G.., 1990. Topographical control of cell behavior: II. Multiple grooved substrata. Development. 108, 635-644
    37. Singhvi, R., Stephanopoulos, G.N., Wang, D.I.C., 1992. Effect of substratum morphology on animal cell adhesion and behavior. Mater. Res. Soc. Symp. Proc. 252, 237-245
    38. Hench, L. L., 1998. Bioactive materials: the potential for tissue regeneration. J. Biomed. Mater. Res. 41, 511-517.
    39. Yszemski, M. J., Pyne, R. G., Hayes, W. C., Langer, R., 1996. Mikos, A. G. Evolution of bone transplantation: molecular, cellular and tissue strategies to engineer human bone. Biomaterials 17, 175-185.
    40. Puleo, D. A., Bizios, R., 1992. Formation of local contacts by osteoblasts cultured on orthopaedic biomaterials. J. Biomed. Mater. Res. 26, 291-301.
    41. Webster, T.J., Siegel, R.W., Bizios, R., 1999. Osteoblast adhesion on nanophase ceramics. Biomaterials 20, 1221–1227.
    42. Turner, S.W., Kam, L., Isaacson, M., Craighead, H.G., Shain, W., Turner, J.N., 1997. Cell attachment on silicon nanostructures. J. Vac. Sci. Technol., B 15, 2848–2854.
    43. James, C.D., Davis, R.C., Kam, L., Craighead, H.G. Isaacson, M., Turner, J.N., Shain, W., 1998. Patterned protein layers on solid substrates by thin stamp microcontact printing. Langmuir 14, 741–744.
    44. Craighead, H.G., Turner, S.W., Davis, R.C., James, C.D., Perez, A.M., St. John, P.M., Isaacson, M.S., Kam, L., Shain, W., Turner, J.N., Banker, G., 1998. Chemical and topographical surface modification for control of central nervous system cell adhesion. J. Biomed. Microdev. 1, 49–64.
    45. Craighead, H.G., Turner, S.W., Davis, R.C., James, C., Perez, A.M., St. John, P.M., Isaacson, M., Shain, W., Turner, J.N., Banker, G., 1998. Chemical and topographical surface modification for control of central nervous system cell adhesion. J. Biomed. Microdev. 1, 49–64.
    46. Rich, A., Harris, A.K., 1981. Anomalous preferences of cultured macrophages for hydrophobic and roughened substrata. J. Cell Sci. 50, 1-7
    47. Lotz, M.M., Burdsal, C.A., Erickson, H.P., McClay, D.R., 1989. Cell attachment on the implanted substrate. J.Cell Biol. 109, 1795-1802
    48. Britland, S., Perridge, C., Denyer, M., Morgan, H., Curtis, A., Wilkinson, C., 1996. Morphogenetic guidance cues can interact synergistically and hierarchically in steering nerve cell growth.Exp. Biol. Online-EBO, 1:2
    49. Peter, T.O., Robert, C.T., 1997. Contact guidance in vitro. Exp Cell Res. 121, 235-249
    50. Gustafson, T., Wolpert, L., 1963. Effect of surface of roughness on cell adhesion. Int. Rev. Cytol. 15, 139-143
    51. Gustafson, T., Wolpert, L., 1967. Cell response on textured surface. Biol. Rev. 42, 442-445
    52. Wojciak-Stothard, B., Madeja, Z., Korohoda, W., Curtis, A., Wilkinson, C., 1995. Activation of macrophage-like cells by multiple grooved substrata.Topographical control of cell behavior. Cell Biol Int. 19, 485-490
    53. Oakley, C., Brunette, D.M., 1993. The sequence of alignment of microtubules, focal contacts and actin filaments in fibroblasts spreading on smooth and grooved titanium substrata. J.Cell Sci. 106, 343-354
    54. Dunn, G.A., Heath, J.P. 1976. Anew hypothesis of contact guidance in tissue cells. Exp. Cell Res. 101, 1-14
    55. Meyle, J., Gultig, K., Wolburg, H., von Recum, A. F., 1993. Anchorage to microtextured surfaces. J. Biomed. Mater. Res. 27, 1553-1557.
    56. Meyle, J., Gultig, K., Nisch, W., 1995. Variation in contact guidance by human cells on a microstructured surface. J. Biomed. Mater. Res. 29, 81-88.
    57. Kapur, R., Calvert, J. M., Rudolph, A. S., 1999. Electrical, chemical and topological addressing of mammalian cells with microfabricated systems. J. Biomech. Eng. 121, 65-72.
    58. Singhvi, R., Kumar, A., Lopez, G. P., Stephanopoulos, G. N., Wang, D. I., Whitesides, G. M., Ingber, D. E., 1994. Engineering cell shape and function. Science 264, 696-698.
    59. Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M., Ingber, D. E., 1997. Geometric control of cell life and death. Science 276, 1425-1428.
    60. Chen, C. S., Alonso, J. L., Whitesides, G. M., Ingber, D. E., 2003. Cell shape provides global control of focal adhesion assembly. Biochem. Biophys. Res. Commun. 307, 355-361.
    61. Huang, S., Chen, C. S., Ingber, D. E., 1998. Control of cyclin D1, P27kip1, and cell cycle progression in human capillary endothelial cells by cell shape and cytoskeletal tension. Mol. Biol. Cell 9, 3179-3193.
    62. Eike, L. E. D., Chen, C. S., Mrksich, M., Tien, J., Whitesides, G. M., Ingber, D. E., 1999. Geometric control of switching between growth, apoptosis, and differentiation during angiogenesis using micropattern substrates. In Vitro Cell. Dev. Biol. Anim. 35, 441-448.
    63. Spargo, B. J., Testoff, M. A., Nielsen, T. B., Stenger, D. A., Hickman, J. J., Rudolph, A. S., 1994. Spatially controlled adhension, spreading, and differentiation of endothelial cells on self-assembled molecular monolayers. Proc. Natl. Acad. Sci. USA 91, 11070-11074.
    64. Thomas, C. H., Collier, J. H., Sfeir, C. S., Healy, K. E., 2002. Engineering gene expression and protein synthesis by modulation of nuclear shape. Proc. Natl. Acad. Sci. USA 99, 1972-1977.
    65. Brunette, D. M., Chehroudi, B., 1999. The effects of the surface topography of micromachined titanium substrata on cell behavior in vitro and in vivo. J. Biomech. Eng. 121, 49-57.
    66. Chou, L., Firth, J.D., Uitto, V.J., Brunette. 1995. Substratum surface topography alters cell shape and regulates fibronectin mRNA level, mRNA stability, secretion and assembly in human fibroblasts. J. Cell Sci. 108, 1563-1573
    67. Ingber, D.E., 1998. The architecture of life. Scientific American. 48-65
    68. Cook, J.R., Crute, B.E., Patron,L.M., 1989. Microporosity of the substratum regulates differentiation of MDCK cells in vivo. In Vitro Cell Dev.Biol. 25, 914-922
    69. Cima L.G. Ingber, D.E., Vacanti, J., 1991. Hepatocyte culture on biodegradable polymeric substrates. Biotechnol. Bioeng. 38, 145-158
    70. Blumenthal, N., Ricci, J.L., Alexander, H., 1989. The effects of implant surfaces on bone mineral formation in vitro. Trans. Ann. Mtg. Soc. Biomater. 12. 2-36
    71. Hong, H.L., Brunette, D.M., 1987. Effect of cell shape on proteinase secretion by epithelial cells. J. Cell Sci. 87, 259-267
    72. Chesmel, K., Clark, C.C., Black, J., 1989. Culture surface morphology and chemistry have a synergistic effect on bone cell protein synthesis. Trans. Ann. Mtg. Soc. Biomat. 12.1-28
    73. Brunette, D. M., 1986. Spreading and orientation of epithelial cells on grooved substrata, Exp. Cell Res. 167, 203-217.
    74. Albert F.,Mehmet T., 2000. Microengineering of cellular interactions. Annu Rev Biomed Eng. 2, 227-256
    75. Flemming, R.G., Murphy, C.J.,Abrams, G.A., Goodman, S.L., Nealey, P.F., 1999. Growth behavior of fibroblasts on microgrooved polystyrene. Biomaterials 20, 573-588
    76. George, M.W., Emanuele, O., Shuichi, T., Xingyu, J., Donald, E.I., 2001. Annu Rev Biomed Eng. 3, 335-373
    77. Brunette, D.M., Kenner, G.S., Gould, T.R.L., 1983. Grooved titanium surface orient growth and migration of cells from human gingival explants. J. Dent. Res. 62, 1045-1048.
    78. McNiece, I., Briddell, R., 2001. Ex vivo expansion of hematopoietic progenitor cells and mature cells. Exp. Hematol. 29, 3-11
    79. Moore, K.A., Ema, H., Lemischka I.R., 1997. In vitro maintance of highly purified, transplantable hematopoietic stem cells. Blood 89, 4337-4347
    80. Shih, C.C., Hu, M., Hu, J., Medeiros J., Forman, S.J., 1999, Long-term ex vivo maintenance and expansion of transplantable human hematopoietic stem cells. Blood 94, 1623-1636
    81. http://www.nih.gov/news/stemcell/primer.htm
    82. Lu, X., Leng, Y., 2003. Quantitative analysis of osteoblast behavior on microgrooved hydroxyapatite and titanium substrata. J. Biomed. Mater. Res. 66A, 677-687.
    83. Mata, A., Boehm, C., Fleischman, A.J., Muschler, G., Roy, S., 2002. Analysis of connective tissue progenitor cell behavior on polydimethylsiloxane smooth and channel micro-textures. J. Biomed. Microdev. 4, 267-275.
    84. van Kooten, T.G., Whitesides, J.F., von Recum, A.F., 1998. Influence of silicone(PDMS) surface texture on human skin fibroblast proliferation as determined by cell cycle analysis. J. Biomed. Mater. Res. 43, 1-14.
    85. den Braber, E.T., de Ruijter, J.E., Smits, H.T.J., Ginsel, L.A., von Recum, A.F., Jansen, J.A., 1996a. Quantitative analysis of cell proliferation and orientation on substrata with uniform parallel surface micro-grooves. Biomaterials 17, 1093-1099.
    86. den Braber, E.T., de Ruijter, J.E., Smits, H.T.J., Ginsel, L.A., von Recum, A.F., Jansen, J.A., 1996b. Quantitative analysis of fibroblast morphology on microgrooved surfaces with various groove and ridge dimensions. Biomaterials 17, 2037-2044.
    87. Meyle, J., Gultig, K., Brich, M., Hammerle, H., Nisch, W., 1994. Contact guidance of fibroblasts on biomaterial surfaces. J. Mater. Sci. Mater. Med. 5, 463-466.
    88. Curtis, A.S.G., Clark, P., 1990. The effects of topographic and mechanical properties of materials on cell behavior. Crit. Rev. Biocompat. 5, 343-362.
    89. Dalton, B.A., Walboomers, X.F., Dziegielewski, M., Evans, M.D.M., Taylor, S., Jansen, J.S., Steele, J.G., 2001. Modulation of epithelial tissue and cell migration by microgrooves. J. Biomed. Mater. Res. 56, 195-207.
    90. Dimilla, P.A., Stone, J.A., Quinn, J.A., Albelda, S.M., La uffenburger, D.A., 1993. Maximal migration of human smooth muscle cells on fibronectin and type IV collagen occurs at an intermediate attachment strength. J. Cell Biol. 122, 729-737.
    91. Palecek, S.P., Horwitz, A.F., Lauffenburger, D.A., 1999. Kinetic model for integrin-mediated adhesion release during cell migration. Ann. Biomed. Eng. 27, 219-235.
    92. Ruardy, T.G., Schakenraad, J.M., van der Mei, H.C., Busscher, H.J., 1997. Preparation and characterization of chemical gradient surfaces and their application for the study of cellular interaction phenomena. Surf. Sci. Reports 29, 1-30.
    93. Brochard-Wyart, F., 1995. Droplets: capillarity and wetting. In: Daoud CEWM, editor. Soft Matter Physics. Berlin Heidelberg New York: Springer. 1-45.
    94. Ingber, D.E., Tensegrity, I., 2003. Cell structure and hierarchical systems biology. J. Cell Sci. 116, 1157-1173.
    95. Lindblad, M., Lestelius, M., Johansson, A., Tengvall, P., Thomsen, P., 1997. Cell and soft tissue interactions with methyl- and hydroxyl-terminated alkane thiols on gold surfaces. Biomaterials 18, 1059-1068.
    96. Scotchford, C.A., Cooper, E., Leggett, G..J., Downes, S., 1998. Growth of human osteoblast-like cells on alkanethiol on gold self-assembled monolayers: the effect of surface chemistry. J. Biomed. Mater. Res. 41, 431-442.
    97. Altankov, G., Groth, T., 1994. Reorganization of substratum-bound fibronectin on hydrophilic and hydrophobic materials is related to biocompatibility. J. Mater. Sci. Mater. Med. 5, 732-737.
    98. Kuntz, R.M., Saltzman, W.M., 1997. Neutrophil motility in extracellular matrix gels: mesh size and adhesion affect speed of migration. Biophys. J. 72, 1472-1480.
    99. Lauffenburger, D.A., Horwitz, A.F., 1996. Cell migration: a physically integrated molecular process. Cell 84, 359-369.
    100. Oliver, T., Lee, J., Jacobson, K., 1994. Forces exerted by locomoting cells. Semin. Cell Biol. 5, 139-147.
    101. Dunn, G.A., Brown, A.F., 1986. Alignment of fibroblasts on grooved surfaces described by a simple geometric transformation. J. Cell Sci. 83, 313-340.
    102. Dembo, M., Wang, Y.L., 1999. Stresses at the cell-to-substrate interface duringlocomotion of fibroblasts. Biophys. J. 76, 2307-2316.
    103. Sheetz, M.P., Felsenfeld, D.P., Galbraith, C.G., 1998. Cell migration: regulation of force on extracellular-matrix-integrin complexes. Trends in Cell Biol. 8, 51-54.
    104. Reyes, D.R., Perruccio, E.M., Becerra, S.P., Locascio, L.E, Gaitan, M., 2004. Micropatterning neuronal cells on polyelectrolyte multilayers. Langmuir 20, 8805–8811.
    105. Banyard, J., Zetter, B.R., 1998. The role of cell motility in prostate cancer. Cancer Metastasis Res. 17, 449-458.
    106. Lauffenburger, D.A., Horwitz, A.F., 1996. Cell migration: a physically integrated molecular process. Cell 84, 359-369.
    107. Parent, C.A., Devreotes, P.N., 1999. A cell's sence of direction. Science 284, 765-769.
    108. Adams, J.C., Schwartz, M.A., 2000. Stimulationof fascin spikes by thrombospondin-1 is mediated by the GTPases Rac and Cdc42. J. Cell Biol. 150, 807-822.
    109. Holly, S.P., Larson, M.K., Parise, L.V., 2000. Multiple roles of integrins in cell motility. Exp. Cell Res. 261, 69-74.
    110. del Pozo, M.A., Price, L.S., Alderson, N.B., Ren, X.D., Schwartz, M.A., 2000. Adhesion to the extracellular matrix regulates the coupling of the small GTPase Rac to its effect or PAK. EMBO J. 19, 2008-2014.
    111. Kaji, H., Tsukidate, K., Matsue, T., Nishizawa, M., 2004. In situ control of cellular growth and migration on substrates using microelectrodes. J. Am. Chem. Soc. 126, 15026-15027.
    112. Kimura, T., Sato, Y., Kimura, F., Iwasaka, M., Ueno, S., 2005. Micropatterning of cells using modulated magnetic fields. Langmuir 21, 830-832
    113. Craighead, H. G., Turner, S. W., Davis, R. C., James, C. D., Perez, A. M., St. John, P. M., Isaacson, M. S., Kam, L., Shain, W., Turner, J. N., Banker, G., 1998. Chemical and topographical surface modification for control of central nervous system cell adhesion. J. Biomed. Microdev. 1, 49-64.
    114. Deutsch, J., Motlagh, D., Russell, B., Desai, T. A., 2000. Fabrication of microtextured membranes for cardiac myocyte attachment and orientation. J. Biomed. Mater. Res. 53, 267-275.
    115. Moltagh, D., Deutsch, J., Desai, T., Russell, B., 1999. Morphology of cardiac myocyte is altered by surface topography. American Heart Association Conference August 18-22, Salt Lake City, Utah.
    116. Curtis, A., Wilkinson, C., 1999. New depths in cell behaviour: reactions of cells to nanotopography. Biochem. Soc. Symp. 65, 15-26.
    117. Chou, L., Firth, J. D., Uitto, V. J., Brunette, D. M., 1995. Substratum surface topography alters cell shape and regulates fibronectin mRNA level, mRNA stability, secretion and assembly in human fibroblasts. J. Cell Sci. 108, 1563-1573.
    118. Alberts, B., Bray, D., Lewis, J., Raff, M., Watson, J., 1994. Molecular biology of the cell. Molecular biology of the cell. New York: Garland
    119. Casey, B.G., Cumming, D.R.S., Khandaker II, Curtis, A.S.G., Wilkinson, C.D.W., 1999. Nanoscale embossing of polymers using a thermoplastic die. Microelectron. Eng. 46, 125–128.
    120. Wilkinson, C.D.W., Curtis, A.S.G., Crossan, J., 1998. Nanofabrication in cellular engineering. J. Vac. Sci. Technol., B 16, 3132–3136.
    121. Folkman, J., Moscona, A., 1978. Role of cell shape in growth control. Nature 273, 345–349.
    122. DiMilla, P.A., Stone, J.A., Quinn, J.A., Albelda, S.M., Lauffenburger, D.A., 1993. Maximal migration of human smooth muscle cells on fibronectin and type IV collagen occurs at an intermediate attachment strength. J. Cell Biol. 122, 729–737.
    123. Kuntz, R.M., Saltzman, W.M., 1997. Neutrophil motility in extracellular matrix gels: mesh size and adhesion affect speed of migration. Biophys. J. 72, 1472–1480.
    124. Ten, J., Saltzman, W.M., 1999. Influence of synthetic polymers on neutrophil migration in three-dimensional collagen gels. J. Biomed. Mater. Res. 46, 465–474.
    125. Oakley, C., Brunette, D.M., 1995. Topographic compensation: Guidance and directed locomotion of fibroblasts on grooved micromachined substrata in the absence of microtubules. Cell Motil. Cytoskel. 31, 45–58.
    126. den Braber, E.T., de Ruijter, J.E., Smits, H.T.J., Ginsel, L.A., von Recum, A.F., Jansen, J.A., 1996. Quantitative analysis of cell proliferation and orientation on substrata with uniform parallel surface micro grooves. Biomaterials 17, 1093–1099.
    127. den Braber, E.T. de Ruijter, J.E., Ginsel, L.A., von Recum, A.F., Jansen, J.A., 1995. Quantitative analysis of fibroblast morphology on microgrooved surfaces with various groove and ridge dimensions. Biomaterials 17, 2037–2044.
    128. den Braber, E.T., de Ruijter, J.E., Smits, H.T.J., Ginsel, L.A., von Recum, A F., Jansen, J.A., 1995. Effect of parallel surface microgrooves and surface energy on cell growth. J. Biomed. Mater. Res. 2, 511–518.
    129. Hohn, H.P., Steih, U., Denker, H.W., 1995. A novel artificial substrate for cell culture: effects of substrate flexibility/malleability on cell growth and morphology. In Vitro Cell Dev. Biol. 31A, 37–44.
    130. Ingber, D.E., 1993. Cellular tensegrity: defining new rules of biological design that govern the cytoskeleton. J. Cell Sci. 104, 613–627.
    131. Banes, A.J., Tsuzaki, M., Yamamoto, J., 1995. Mechanoreception at the cellular lelvel: the detection, interpretation, and diversity of responses to mechanical signals. Biochem. Cell Biol. 73, 349–365.
    132. Fuller, G.M., Shields, D., 謝娟珠監修, 王斐編譯,1997. 醫學細胞分子生物學 合記出版社
    133. Sheetz, M.P., Felsenfeld, D.P., Galbraith, C.G., 1998. Cell migration: regulation of force on extacellular-matrix-integrin complexes. Trans in Cell Biology. 8, 51-54
    134. Milknson, C.D.W., Riehle, M., Wood, M., Gallaghe, J., Curtis, A.S.G., 2002. The use of materials patterned on a nano- and micro-metric scale in cellular engineering. Materials Sci. Eng. C. 9, 263-269
    135. http://www.xtnm.com.tw/ book/10/01.htm
    136. http://www.bbioo.com
    137. 宋今丹主編,魏正舒監修, 1995. 醫學細胞生物學 合記出版社
    138. Danet, G.H., Lee, H.W., Luongo, J.L., Simon, M.C., Bonnet, D.A., 2001. Dissociation between stem cell phenotype and NOD/SCID repopulating activity in human peripheral blood CD34+ cells after ex vivo expansion. Exp. Hematol. 29, 1465-1473
    139. Guzman, P.F., Rodriguez, M.G., Mayani, H., 2002. In vitro proliferation, expansion, and differentiation of CD34+ cell-enriched hematopoietic cell population from human umbilical cord blood in response to recombinant cytokines. Arch. Med. Res. 22, 107-114
    140. Bhatia, M., 2001. AC133 expression in human stem cells. Leukemia 15, 1685-168
    141. DeWynter, E.A., Buck, D., Hart, C., Heywood, R., Coutinho, L.H., Clayton, A., Rafferty, J.A., Burt, D., Guenechea, G., Bueen, J.A., Gagen, D., Fairbairn, J.F., Lord, B.I., Testa, N.G., 1998. CD34+AC133+ cells isolated from cord blood are highly enriched in long-term culture-initiating cells, NOD/SCID-repopulating cells and dendritic cell progenitors. Stem Cells 16, 387-396
    142. McAdams, T.A., Winter, J.N., Miller, W.M., Papoutsakis, E.T., 1996. Hematopoietic cell culture therapies (part II): clinical aspects and applications. Trends Biotechnol. 14, 388-396
    143. Xiao, H., 羅正忠,張鼎張 譯, 2002. 半導體製程技術導論. 歐亞圖書公司

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE