研究生: |
林姿婷 Lin, Ts Ting |
---|---|
論文名稱: |
開發包覆sorafenib之PLGA奈米粒子於全身性肝纖維化治療之應用 Development and Characterization of Sorafenib-Loaded PLGA Nanoparticles for the Systemic Treatment of Liver Fibrosis |
指導教授: |
陳韻晶
Chen, Yunching |
口試委員: |
趙麗洋
曾昱程 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 生物醫學工程研究所 Institute of Biomedical Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 67 |
中文關鍵詞: | 肝纖維化 、奈米粒子 |
外文關鍵詞: | Liver fibrosis, PLGA nanoparticles |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Sorafenib在近期的研究已被證實是一個具有潛在抗纖維化試劑的一種酪胺酸激酶抑制劑。然而,sorafenib本身的狹窄治療窗口限制了其在臨床上的應用以及治療功效。因此,我們利用聚乙二醇-聚乳酸聚乙醇酸(PEG-PLGA)共聚物以及聚乳酸聚乙醇酸(PLGA)的混合物開發及最優化的奈米粒子輸送sorafenib於利用四氯化碳誘導肝纖維化小鼠模型。我們比較了兩種不同的PLGA奈米粒子的藥物以及生物學的特性:PEG-PLGA奈米粒子(PEG-PLGA / PLGA = 10/0)和PEG-PLGA / PLGA奈米粒子(PEG-PLGA / PLGA = 5/5 )。增加PLGA在PEG-PLGA/PLGA中的含量會導致奈米粒子的大小增加、增加藥物包覆率以及降低藥物釋放速率。兩種奈米粒子皆可以顯著的延長血液中藥物濃度,並且增加了纖維化肝臟組織的吸收。透過包覆sorafenib的PEG-PLGA和PEG-PLGA/PLGA每週兩次,為期四週的全身性用藥治療,可以降低的α-平滑肌肌動蛋白表現量以及減少膠原蛋白的沉積,顯示出能有效的改善於四氯化碳誘導肝纖維化小鼠的纖維化肝臟。除此之外,包覆sorafenib之PLGA奈子粒子可以顯著的縮小異常微血管半徑,降低微血管密度,使纖維化肝臟的血管趨於正常化。總結來說,我們的研究結果顯示包覆sorafenib的PLGA奈子粒子對於肝纖維化的預防與治療的臨床潛力。
Sorafenib, a tyrosine kinase inhibitor, has been shown as a potential antifibrotic agent. However, a narrow therapeutic window limits its clinical use and therapeutic efficacy of sorafenib. Herein we have developed and designed a drug delivery system - nanoparticle (NP) formulations prepared from mixture of poly(ethylene glycol)-b-poly(lactic-co-glycolic acid) (PEG-PLGA) copolymers with poly(lactic-co-glycolic acid) (PLGA) as a vehicle to deliver sorafenib into fibrotic livers of CCl4-induced fibrosis mouse model. We characterized and compared pharmaceutical and biological properties of two different PLGA nanoparticles: PEG-PLGA (PEG-PLGA/PLGA = 10/0) and PEG-PLGA/PLGA NPs (PEG-PLGA/PLGA = 5/5). Increasing the PLGA content in the PEG-PLGA/PLGA mixture led to increases in the particle size and drug encapsulation efficacy and a decrease in the drug release rate. Both PEG-PLGA and PEG-PLGA/PLGA NPs significantly prolonged the blood circulation of the cargo and increased the uptake by the fibrotic livers. The systemic administration of PEG-PLGA or PEG-PLGA/PLGA NPs containing sorafenib twice per week for a period of 4 weeks efficiently ameliorated liver fibrosis, as indicated by decreased α-smooth muscle actin (α-SMA) content and collagen production in the livers of CCl4-treated mice. Furthermore, sorafenib-loaded PLGA NPs significantly shrank the abnormal blood vessels and decreased microvascular density, leading to vessel normalization in the fibrotic livers. In conclusion, our results support the clinical potential of sorafenib-loaded PLGA NPs for the prevention and treatment of liver fibrosis.
1. Friedman SL. Mechanisms of hepatic fibrogenesis. Gastroenterology 2008;134(6):1655-1669.
2. Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. Journal of Biological Chemistry 2000;275(4):2247-2250.
3. Bisht S, Khan MA, Bekhit M, Bai H, Cornish T, Mizuma M, Rudek MA, Zhao M, Maitra A, Ray B. A polymeric nanoparticle formulation of curcumin (NanoCurc™) ameliorates CCl4-induced hepatic injury and fibrosis through reduction of pro-inflammatory cytokines and stellate cell activation. Laboratory Investigation 2011;91(9):1383-1395.
4. Fernández M, Semela D, Bruix J, Colle I, Pinzani M, Bosch J. Angiogenesis in liver disease. Journal of Hepatology 2009;50(3):604-620.
5. Bataller R, Brenner DA. Liver fibrosis. Journal of clinical investigation 2005;115(2):209.
6. Reeves HL, Friedman SL. Activation of hepatic stellate cells-a key issue in liver fibrosis. Front Biosci 2002;7(4):808-826.
7. Gressner A, Weiskirchen R. Modern pathogenetic concepts of liver fibrosis suggest stellate cells and TGF‐β as major players and therapeutic targets. Journal of cellular and molecular medicine 2006;10(1):76-99.
8. Serini G, Bochaton-Piallat M-L, Ropraz P, Geinoz A, Borsi L, Zardi L, Gabbiani G. The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-β1. The Journal of cell biology 1998;142(3):873-881.
9. Bissell DM, Roulot D, George J. Transforming growth factor β and the liver. Hepatology 2001;34(5):859-867.
10. Pinzani M, Marra F. Cytokine receptors and signaling in hepatic stellate cells. 2001. p 397-416.
11. Carpino G, Morini S, Corradini SG, Franchitto A, Merli M, Siciliano M, Gentili F, Muda AO, Berloco P, Rossi M. Alpha-SMA expression in hepatic stellate cells and quantitative analysis of hepatic fibrosis in cirrhosis and in recurrent chronic hepatitis after liver transplantation. Digestive and liver disease 2005;37(5):349-356.
12. Pubchem. Sorafenib. http://pubchem.ncbi.nlm.nih.gov/compound/Sorafenib.
13. Institute NC. FDA Approval for Sorafenib Tosylate. http://www.cancer.gov/about-cancer/treatment/drugs/fda-sorafenib-tosylate.
14. Cheng A-L, Kang Y-K, Chen Z, Tsao C-J, Qin S, Kim JS, Luo R, Feng J, Ye S, Yang T-S. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. The lancet oncology 2009;10(1):25-34.
15. Wilhelm S, Carter C, Lynch M, Lowinger T, Dumas J, Smith RA, Schwartz B, Simantov R, Kelley S. Discovery and development of sorafenib: a multikinase inhibitor for treating cancer. Nature reviews Drug discovery 2006;5(10):835-844.
16. Schuppan D, Ruehl M, Somasundaram R, Hahn EG. Matrix as a modulator of hepatic fibrogenesis. 2001. p 351-372.
17. Gressner AM, Weiskirchen R, Breitkopf K, Dooley S. Roles of TGF-beta in hepatic fibrosis. Front Biosci 2002;7(1):d793-807.
18. Patsenker E, Popov Y, Stickel F, Schneider V, Ledermann M, Sägesser H, Niedobitek G, Goodman SL, Schuppan D. Pharmacological inhibition of integrin αvβ3 aggravates experimental liver fibrosis and suppresses hepatic angiogenesis. Hepatology 2009;50(5):1501-1511.
19. Patsenker E, Stickel F. Role of integrins in fibrosing liver diseases. American Journal of Physiology-Gastrointestinal and Liver Physiology 2011;301(3):G425-G434.
20. Neef M, Ledermann M, Saegesser H, Schneider V, Widmer N, Decosterd LA, Rochat B, Reichen J. Oral imatinib treatment reduces early fibrogenesis but does not prevent progression in the long term. Journal of hepatology 2006;44(1):167-175.
21. Wang Y, Gao J, Zhang D, Zhang J, Ma J, Jiang H. New insights into the antifibrotic effects of sorafenib on hepatic stellate cells and liver fibrosis. Journal of hepatology 2010;53(1):132-144.
22. Hennenberg M, Trebicka J, Kohistani Z, Stark C, Nischalke H-D, Krämer B, Körner C, Klein S, Granzow M, Fischer H-P. Hepatic and HSC-specific sorafenib effects in rats with established secondary biliary cirrhosis. Laboratory Investigation 2011;91(2):241-251.
23. Deng Y-R, Ma H-D, Tsuneyama K, Yang W, Wang Y-H, Lu F-T, Liu C-H, Liu P, He X-S, Diehl AM. STAT3-mediated attenuation of CCl 4-induced mouse liver fibrosis by the protein kinase inhibitor sorafenib. Journal of autoimmunity 2013;46:25-34.
24. Hong F, Chou H, Fiel MI, Friedman SL. Antifibrotic activity of sorafenib in experimental hepatic fibrosis: refinement of inhibitory targets, dosing, and window of efficacy in vivo. Digestive diseases and sciences 2013;58(1):257-264.
25. Mishra B, Patel BB, Tiwari S. Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine: Nanotechnology, biology and medicine 2010;6(1):9-24.
26. Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: nanosized vehicles for drug delivery in cancer. Trends in pharmacological sciences 2009;30(11):592-599.
27. Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nature materials 2013;12(11):991-1003.
28. Brouet I, Ohshima H. Curcumin, an anti-tumor promoter and anti-inflammatory agent, inhibits induction of nitric oxide synthase in activated macrophages. Biochemical and biophysical research communications 1995;206(2):533-540.
29. Fu Y, Zheng S, Lin J, Ryerse J, Chen A. Curcumin protects the rat liver from CCl4-caused injury and fibrogenesis by attenuating oxidative stress and suppressing inflammation. Molecular pharmacology 2008;73(2):399-409.
30. Huang M-T, Smart RC, Wong C-Q, Conney AH. Inhibitory effect of curcumin, chlorogenic acid, caffeic acid, and ferulic acid on tumor promotion in mouse skin by 12-O-tetradecanoylphorbol-13-acetate. Cancer research 1988;48(21):5941-5946.
31. PARK EJ, Jeon CH, Ko G, KIM J, SOHN DH. Protective effect of curcumin in rat liver injury induced by carbon tetrachloride. Journal of Pharmacy and Pharmacology 2000;52(4):437-440.
32. Rao TS, Basu N, Siddiqui H. Anti-inflammatory activity of curcumin analogues. The Indian journal of medical research 2013;137(4):841.
33. Garcea G, Berry DP, Jones DJ, Singh R, Dennison AR, Farmer PB, Sharma RA, Steward WP, Gescher AJ. Consumption of the putative chemopreventive agent curcumin by cancer patients: assessment of curcumin levels in the colorectum and their pharmacodynamic consequences. Cancer Epidemiology Biomarkers & Prevention 2005;14(1):120-125.
34. Pan M-H, Huang T-M, Lin J-K. Biotransformation of curcumin through reduction and glucuronidation in mice. Drug metabolism and disposition 1999;27(4):486-494.
35. Liu P, Hu Y-Y, Liu C, Zhu D-Y, Xue H-M, Xu Z-Q, Xu L-M, Liu C-H, Gu H-T, Zhang Z-Q. Clinical observation of salvianolic acid B in treatment of liver fibrosis in chronic hepatitis B. World Journal of Gastroenterology 2002;8(4):679-685.
36. Tao Y, Liu C. Progress of research on mechanism of salvia miltiorrhiza and its chemical ingredients against liver fibrosis. Zhong xi yi jie he xue bao= Journal of Chinese integrative medicine 2004;2(2):145.
37. Li Y, Shi J, Hua Z, Chen H, Ruan M, Yan D. Hollow spheres of mesoporous aluminosilicate with a three-dimensional pore network and extraordinarily high hydrothermal stability. Nano Letters 2003;3(5):609-612.
38. He Q, Zhang J, Chen F, Guo L, Zhu Z, Shi J. An anti-ROS/hepatic fibrosis drug delivery system based on salvianolic acid B loaded mesoporous silica nanoparticles. Biomaterials 2010;31(30):7785-7796.
39. Makadia HK, Siegel SJ. Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 2011;3(3):1377-1397.
40. Lee SY, Hyun H, Youn JY, Kim BS, Song IB, Kim MS, Lee B, Khang G, Lee HB. Preparation of nano-emulsified paclitaxel using MPEG–PLGA diblock copolymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2008;313:126-130.
41. Guo J, Gao X, Su L, Xia H, Gu G, Pang Z, Jiang X, Yao L, Chen J, Chen H. Aptamer-functionalized PEG–PLGA nanoparticles for enhanced anti-glioma drug delivery. Biomaterials 2011;32(31):8010-8020.
42. Parveen S, Sahoo SK. Long circulating chitosan/PEG blended PLGA nanoparticle for tumor drug delivery. European journal of pharmacology 2011;670(2):372-383.
43. Zhang Z, Feng S-S. The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of paclitaxel-loaded poly (lactide)–tocopheryl polyethylene glycol succinate nanoparticles. Biomaterials 2006;27(21):4025-4033.
44. Tan J, Shah S, Thomas A, Ou-Yang HD, Liu Y. The influence of size, shape and vessel geometry on nanoparticle distribution. Microfluidics and nanofluidics 2013;14(1-2):77-87.
45. Tapia-Abellán A, Martínez-Esparza M, Ruiz-Alcaraz AJ, Hernández-Caselles T, Martínez-Pascual C, Miras-López M, Such J, Francés R, García-Peñarrubia P. The peritoneal macrophage inflammatory profile in cirrhosis depends on the alcoholic or hepatitis C viral etiology and is related to ERK phosphorylation. BMC immunology 2012;13(1):42.
46. Cho M, Cho W-S, Choi M, Kim SJ, Han BS, Kim SH, Kim HO, Sheen YY, Jeong J. The impact of size on tissue distribution and elimination by single intravenous injection of silica nanoparticles. Toxicology letters 2009;189(3):177-183.
47. Mittal G, Sahana D, Bhardwaj V, Kumar MR. Estradiol loaded PLGA nanoparticles for oral administration: effect of polymer molecular weight and copolymer composition on release behavior in vitro and in vivo. Journal of Controlled Release 2007;119(1):77-85.
48. Di Gion P, Kanefendt F, Lindauer A, Scheffler M, Doroshyenko O, Wolf J, Jaehde U. Clinical pharmacokinetics of tyrosine kinase inhibitors. Clinical pharmacokinetics 2011;50(9):551-603.
49. Lam ET, Ringel MD, Kloos RT, Prior TW, Knopp MV, Liang J, Sammet S, Hall NC, Wakely PE, Vasko VV. Phase II clinical trial of sorafenib in metastatic medullary thyroid cancer. Journal of Clinical Oncology 2010;28(14):2323-2330.
50. Schuppan D, Kim YO. Evolving therapies for liver fibrosis. The Journal of clinical investigation 2013;123(123 (5)):1887-1901.
51. Rossetto P, Macdonald PL, Canavesi A. Process for the preparation of sorafenib and salts thereof. Google Patents; 2009.
52. Wang H, Zhao Y, Wu Y, Hu Y-l, Nan K, Nie G, Chen H. Enhanced anti-tumor efficacy by co-delivery of doxorubicin and paclitaxel with amphiphilic methoxy PEG-PLGA copolymer nanoparticles. Biomaterials 2011;32(32):8281-8290.