簡易檢索 / 詳目顯示

研究生: 李書蘋
Li, Shu-Pin
論文名稱: 二氧化錳結合碳的複合材料對電容去離子應用的表面化學行為
Surface chemical behavior of MnO2/carbon composite material in capacitive deionization
指導教授: 王竹方
Wang, Chu-Fang
口試委員: 蔣本基
Chiang, Pen-Chi
王清海
Wang, Tsing-Hai
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 96
中文關鍵詞: 電容去離子二氧化錳電雙層電容
外文關鍵詞: Capacitive Deionization, MnO2, Double Layer Capacitance
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 深入瞭解關於二氧化錳(MnO2)以及微孔碳電容性質之間相互作用的電化學行為,對於進一步增強電容去離子(CDI)的表現是不可獲缺的。在此,一系列由不同MnO2/C重量比的電極被製作出來並比較它們在施加不同偏電壓下三組連續充電/放電循環的CDI性能表現。隨著MnO2含量的上升,電極中的電容和微孔洞體積分別以半對數和線性關係下降。更有趣的事是當施加小於水電解電位(1.23 VRHE)的偏壓時,電極的除鹽量會隨著MnO2含量上升而呈現半對數的下降;然而,當施加大於水電解電位的偏壓時,最大除鹽量落在30 weight%的MnO2電極。另外,除鹽量也隨著操作電壓的增加而增加,因此我們推測由微孔碳所產生的重疊電雙層(EDL)電容主要負責在低操作電位(<1.23 VRHE)下除鹽;相反地,在高施加電壓下的高CDI性能可能是來自於部分還原的MnO2所建立的增強電場。因此,可以利用在施加低電壓時增加EDL電容或在施加高電壓時增加法拉第電荷來達到CDI效率的提升。


    Deep understanding the interplay between the electrochemical behavior of associated manganese oxide (MnO2) and the capacitive property of microporous carbonaceous support is essential for further capacitive deionization (CDI) performance enhancement. A series of electrodes with different MnO2/carbon weight ratios were thus fabricated and their CDI performances at different applied potentials in three consecutive charging/discharging cycles were evaluated. It was noted that the capacitance and micropore volume of the electrodes decreased semi-logarithmically and linearly, respectively with increasing MnO2 content. Interestingly when applying a bias lower than the water electrolysis potential (1.23 VRHE), salt removal of electrodes also decreased semi-logarithmically with increasing MnO2 content. However, when a bias higher than the water electrolysis potential was applied, a maximum salt removal was noted at the electrode with 30 weight% MnO2. Provided that the salt removal also increased with increasing operation potential, we therefore speculated that the overlapped electric double layer (EDL) capacitance arisen by microporous carbonaceous supports was mainly responsible for salt removal at low operation potential (<1.23 VRHE). By contrary, high CDI performance under high applied potential was presumably through enhanced electric field established by the partially reduced MnO2. Accordingly, CDI efficiency enhancement can be achieved by increasing either the EDL capacitance when operated under low applied potential or the faradaic charge if high potential is applied.

    摘要 I Abstract II Chapter 1 Introduction 1 1.1 Background of the Study 1 1.2 Research Motivation 2 Chapter 2 Literature Review 5 2.1 Capacitive Deionization (CDI) 6 2.1.1 Brief Introduction of Capacitive Deionization 6 2.1.2 The Mechanisms of Capacitive Deionization 7 2.1.3 Types of CDI Architectures 13 2.2 Manganese Dioxide (MnO2) as Redox Active Material 15 2.2.1 Properties of Manganese Dioxide 16 2.2.2 The Development of Manganese Dioxide as Faradaic Electrodes 19 2.2.3 Conductive Additives 21 2.2.4 The Surface Charge of Electrodes 23 Chapter 3 Experimental Section 26 3.1 Chemical Reagents 26 3.2 Experimental Instruments 27 3.2.1 Electrochemical Workstation 27 3.2.2 Scanning Electron Microscopy (SEM) with Energy Dispersive Spectroscopy (EDS) 28 3.2.3 Specific Surface Area and Porosimetry Analyser (BET) 30 3.3 Details of Preparations and Experimental Methods 32 3.3.1 Synthesis of α-MnO2 material 32 3.3.2 Preparation of different weight ratios of α-MnO2 to CB and AC electrodes 32 3.3.3 Electrochemical Property Measurements 33 3.3.4 Characterization of Electrodes 34 3.3.5 Capacitive Deionization Experiments 35 Chapter 4 Results and Discussion 37 4.1 Fabrication of MnO2/CB composite electrodes 38 4.2 Electrochemical Behaviors of MnO2/CB composite electrodes 44 4.3 The CDI efficiency of MnO2/CB composite electrodes 58 Chapter 5 Conclusion and Future Works 79 5.1 Conclusion 79 5.2 Future Work 80 Reference 81 Appendix 90

    1. Zhang, C.; He, D.; Ma, J.; Tang, W.; Waite, T. D., Faradaic reactions in capacitive deionization (CDI) - problems and possibilities: A review. Water Res. 2018, 128, 314-330.
    2. Caudle D.D., T. J. H., Cooper J.L., Arnold B.B., Papastamataki A. , Electrochemical demineralization of water with carbon electrodes. Oklahoma University Research Institute: 1966.
    3. Suss, M. E.; Porada, S.; Sun, X.; Biesheuvel, P. M.; Yoon, J.; Presser, V., Water desalination via capacitive deionization: what is it and what can we expect from it? Energy Environ. Sci. 2015, 8 (8), 2296-2319.
    4. Lee, J.; Kim, S.; Kim, C.; Yoon, J., Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques. Energy Environ. Sci. 2014, 7 (11), 3683-3689.
    5. Liu, Y. H.; Yu, T. C.; Chen, Y. W.; Hou, C. H., Incorporating Manganese Dioxide in Carbon Nanotube–Chitosan as a Pseudocapacitive Composite Electrode for High-Performance Desalination. ACS Sustain. Chem. Eng. 2018, 6 (3), 3196-3205.
    6. Suss, M. E.; Baumann, T. F.; Bourcier, W. L.; Spadaccini, C. M.; Rose, K. A.; Santiago, J. G.; Stadermann, M., Capacitive desalination with flow-through electrodes. Energy Environ. Sci. 2012, 5 (11), 9511-9519.
    7. Zhao, R.; Biesheuvel, P. M.; Miedema, H.; Bruning, H.; van der Wal, A., Charge Efficiency: A Functional Tool to Probe the Double-Layer Structure Inside of Porous Electrodes and Application in the Modeling of Capacitive Deionization. J. Phys. Chem. Lett. 2010, 1 (1), 205-210.
    8. Xu, S.; Li, S.-P.; Wang, T.; Wang, C.-F., Effect of Surface Ionization of Doped MnO2 on Capacitive Deionization Efficiency. Langmuir 2019, 35 (3), 628-640.
    9. Gao, X.; Omosebi, A.; Landon, J.; Liu, K., Surface charge enhanced carbon electrodes for stable and efficient capacitive deionization using inverted adsorption–desorption behavior. Energy Environ. Sci. 2015, 8 (3), 897-909.
    10. Anderson, M. A.; Cudero, A. L.; Palma, J., Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete? Electrochim. Acta 2010, 55 (12), 3845-3856.
    11. Radjenović, J.; Petrović, M.; Ventura, F.; Barceló, D., Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment. Water Res. 2008, 42 (14), 3601-3610.
    12. Xu, T.; Huang, C., Electrodialysis-based separation technologies: A critical review. AIChE J. 2008, 54 (12), 3147-3159.
    13. Seo, S.-J.; Jeon, H.; Lee, J. K.; Kim, G.-Y.; Park, D.; Nojima, H.; Lee, J.; Moon, S.-H., Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications. Water Res. 2010, 44 (7), 2267-2275.
    14. Bouhadana, Y.; Avraham, E.; Noked, M.; Ben-Tzion, M.; Soffer, A.; Aurbach, D., Capacitive Deionization of NaCl Solutions at Non-Steady-State Conditions: Inversion Functionality of the Carbon Electrodes. J. Phys. Chem. C. 2011, 115 (33), 16567-16573.
    15. Xu, P.; Drewes, J. E.; Heil, D.; Wang, G., Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology. Water Res. 2008, 42 (10), 2605-2617.
    16. Flemming, H.-C., Reverse osmosis membrane biofouling. Exp. Therm. Fluid Sci. 1997, 14 (4), 382-391.
    17. Lee, J. H.; Bae, W. S.; Choi, J. H., Electrode reactions and adsorption/desorption performance related to the applied potential in a capacitive deionization process. Desalination 2010, 258 (1), 159-163.
    18. Xu, X.; Wang, M.; Liu, Y.; Lu, T.; Pan, L., Ultrahigh Desalinization Performance of Asymmetric Flow-Electrode Capacitive Deionization Device with an Improved Operation Voltage of 1.8 V. ACS Sustainable Chem. Eng. 2017, 5 (1), 189-195.
    19. Chen, F.; Huang, Y.; Guo, L.; Ding, M.; Yang, H. Y., A dual-ion electrochemistry deionization system based on AgCl-Na0.44MnO2 electrodes. Nanoscale 2017, 9 (28), 10101-10108.
    20. Chen, F.; Huang, Y.; Guo, L.; Sun, L.; Wang, Y.; Yang, H. Y., Dual-ions electrochemical deionization: a desalination generator. Energy Environ. Sci. 2017, 10 (10), 2081-2089.
    21. Porada, S.; Zhao, R.; van der Wal, A.; Presser, V.; Biesheuvel, P. M., Review on the science and technology of water desalination by capacitive deionization. Prog. Mater Sci. 2013, 58 (8), 1388-1442.
    22. Liu, Y.; Nie, C.; Liu, X.; Xu, X.; Sun, Z.; Pan, L., Review on carbon-based composite materials for capacitive deionization. RSC Adv. 2015, 5 (20), 15205-15225.
    23. Biesheuvel, P. M.; Bazant, M. Z., Nonlinear dynamics of capacitive charging and desalination by porous electrodes. Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 2010, 81 (3 Pt 1), 031502.
    24. Chen, Z.; Zhang, H.; Wu, C.; Luo, L.; Wang, C.; Huang, S.; Xu, H., A study of the effect of carbon characteristics on capacitive deionization (CDI) performance. Desalination 2018, 433, 68-74.
    25. Tang, W.; Kovalsky, P.; He, D.; Waite, T. D., Fluoride and nitrate removal from brackish groundwaters by batch-mode capacitive deionization. Water Res. 2015, 84, 342-349.
    26. Han, L.; Karthikeyan, K. G.; Anderson, M. A.; Gregory, K. B., Exploring the impact of pore size distribution on the performance of carbon electrodes for capacitive deionization. J. Colloid Interface Sci. 2014, 430, 93-99.
    27. He, D.; Wong, C. E.; Tang, W.; Kovalsky, P.; Waite, T. D., Faradaic Reactions in Water Desalination by Batch-Mode Capacitive Deionization. Environ. Sci. Technol. Lett. 2016, 3 (5), 222-226.
    28. Lado, J. J.; Pérez-Roa, R. E.; Wouters, J. J.; Isabel Tejedor-Tejedor, M.; Anderson, M. A., Evaluation of operational parameters for a capacitive deionization reactor employing asymmetric electrodes. Sep. Purif. Technol. 2014, 133, 236-245.
    29. Shapira, B.; Avraham, E.; Aurbach, D., Side Reactions in Capacitive Deionization (CDI) Processes: The Role of Oxygen Reduction. Electrochim. Acta 2016, 220, 285-295.
    30. Martínez-Huitle, C. A.; Rodrigo, M. A.; Sirés, I.; Scialdone, O., Single and Coupled Electrochemical Processes and Reactors for the Abatement of Organic Water Pollutants: A Critical Review. Chem. Rev. 2015, 115 (24), 13362-13407.
    31. Jung, Y. J.; Baek, K. W.; Oh, B. S.; Kang, J.-W., An investigation of the formation of chlorate and perchlorate during electrolysis using Pt/Ti electrodes: The effects of pH and reactive oxygen species and the results of kinetic studies. Water Res. 2010, 44 (18), 5345-5355.
    32. Noked, M.; Soffer, A.; Aurbach, D., The electrochemistry of activated carbonaceous materials: past, present, and future. J. Solid State Electrochem. 2011, 15 (7), 1563.
    33. Wen, X.; Zhang, D.; Shi, L.; Yan, T.; Wang, H.; Zhang, J., Three-dimensional hierarchical porous carbon with a bimodal pore arrangement for capacitive deionization. J. Mater. Chem. 2012, 22 (45), 23835-23844.
    34. Blair, J. W.; Murphy, G. W., Electrochemical Demineralization of Water with Porous Electrodes of Large Surface Area. In SALINE WATER CONVERSION, American Chemical Society: 1960; Vol. 27, pp 206-223.
    35. Porada, S.; Weinstein, L.; Dash, R.; van der Wal, A.; Bryjak, M.; Gogotsi, Y.; Biesheuvel, P. M., Water Desalination Using Capacitive Deionization with Microporous Carbon Electrodes. ACS Appl. Mater. Interfaces 2012, 4 (3), 1194-1199.
    36. Zhao, R.; van Soestbergen, M.; Rijnaarts, H. H. M.; van der Wal, A.; Bazant, M. Z.; Biesheuvel, P. M., Time-dependent ion selectivity in capacitive charging of porous electrodes. J. Colloid Interface Sci. 2012, 384 (1), 38-44.
    37. Biesheuvel, P. M.; Zhao, R.; Porada, S.; van der Wal, A., Theory of membrane capacitive deionization including the effect of the electrode pore space. J. Colloid Interface Sci. 2011, 360 (1), 239-248.
    38. Wang, K.; Liu, Y.; Ding, Z.; Li, Y.; Lu, T.; Pan, L., Metal-organic frameworks derived NaTi2(PO4)3/carbon composite for efficient hybrid capacitive deionization. J. Mater. Chem. A 2019.
    39. Kumar, N.; Guru Prasad, K.; Sen, A.; Maiyalagan, T., Enhanced pseudocapacitance from finely ordered pristine α-MnO2 nanorods at favourably high current density using redox additive. Appl. Surf. Sci. 2018, 449, 492-499.
    40. Kim, S.; Lee, J.; Kim, C.; Yoon, J., Na2FeP2O7 as a Novel Material for Hybrid Capacitive Deionization. Electrochim. Acta 2016, 203, 265-271.
    41. Byles, B. W.; Cullen, D. A.; More, K. L.; Pomerantseva, E., Tunnel structured manganese oxide nanowires as redox active electrodes for hybrid capacitive deionization. Nano Energy 2018, 44, 476-488.
    42. Kim, S.; Lee, J.; Kang, J. S.; Jo, K.; Kim, S.; Sung, Y.-E.; Yoon, J., Lithium recovery from brine using a λ-MnO2/activated carbon hybrid supercapacitor system. Chemosphere 2015, 125, 50-56.
    43. Wu, T.; Wang, G.; Wang, S.; Zhan, F.; Fu, Y.; Qiao, H.; Qiu, J., Highly Stable Hybrid Capacitive Deionization with a MnO2 Anode and a Positively Charged Cathode. Environ. Sci. Technol. Lett. 2018, 5 (2), 98-102.
    44. Guo, L.; Mo, R.; Shi, W.; Huang, Y.; Leong, Z. Y.; Ding, M.; Chen, F.; Yang, H. Y., A Prussian blue anode for high performance electrochemical deionization promoted by the faradaic mechanism. Nanoscale 2017, 9 (35), 13305-13312.
    45. Porada, S.; Shrivastava, A.; Bukowska, P.; Biesheuvel, P. M.; Smith, K. C., Nickel Hexacyanoferrate Electrodes for Continuous Cation Intercalation Desalination of Brackish Water. Electrochim. Acta 2017, 255, 369-378.
    46. Huang, Y.; Chen, F.; Guo, L.; Yang, H. Y., Ultrahigh performance of a novel electrochemical deionization system based on a NaTi2(PO4)3/rGO nanocomposite. J. Mater. Chem. A 2017, 5 (34), 18157-18165.
    47. Chen, F.; Leong, Z. Y.; Yang, H. Y., An aqueous rechargeable chloride ion battery. Energy Storage Mater. 2017, 7, 189-194.
    48. Tang, Y.; Zheng, S.; Xu, Y.; Xiao, X.; Xue, H.; Pang, H., Advanced batteries based on manganese dioxide and its composites. Energy Storage Mater. 2018, 12, 284-309.
    49. Xu, H.; Yan, N.; Qu, Z.; Liu, W.; Mei, J.; Huang, W.; Zhao, S., Gaseous Heterogeneous Catalytic Reactions over Mn-Based Oxides for Environmental Applications: A Critical Review. Environ. Sci. Technol. 2017, 51 (16), 8879-8892.
    50. Wei, W.; Cui, X.; Chen, W.; Ivey, D. G., Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem. Soc. Rev. 2011, 40 (3), 1697-1721.
    51. Wang, Y.-T.; Lu, A.-H.; Zhang, H.-L.; Li, W.-C., Synthesis of Nanostructured Mesoporous Manganese Oxides with Three-Dimensional Frameworks and Their Application in Supercapacitors. J. Phys. Chem. C. 2011, 115 (13), 5413-5421.
    52. Wang, Z.; Mo, F.; Ma, L.; Yang, Q.; Liang, G.; Liu, Z.; Li, H.; Li, N.; Zhang, H.; Zhi, C., Highly Compressible Cross-Linked Polyacrylamide Hydrogel-Enabled Compressible Zn–MnO2 Battery and a Flexible Battery–Sensor System. ACS Appl. Mater. Interfaces 2018, 10 (51), 44527-44534.
    53. Zhu, S.; Li, L.; Liu, J.; Wang, H.; Wang, T.; Zhang, Y.; Zhang, L.; Ruoff, R. S.; Dong, F., Structural Directed Growth of Ultrathin Parallel Birnessite on β-MnO2 for High-Performance Asymmetric Supercapacitors. ACS Nano 2018, 12 (2), 1033-1042.
    54. Zhao, P.; Yao, M.; Ren, H.; Wang, N.; Komarneni, S., Nanocomposites of hierarchical ultrathin MnO2 nanosheets/hollow carbon nanofibers for high-performance asymmetric supercapacitors. Appl. Surf. Sci. 2019, 463, 931-938.
    55. Saroyan, H. S.; Arampatzidou, A.; Voutsa, D.; Lazaridis, N. K.; Deliyanni, E. A., Activated carbon supported MnO2 for catalytic degradation of reactive black 5. Colloids Surf. A 2019, 566, 166-175.
    56. Li, S.; Zhang, G.; Wang, P.; Zheng, H.; Zheng, Y., Microwave-enhanced Mn-Fenton process for the removal of BPA in water. Chem. Eng. J. 2016, 294, 371-379.
    57. Dai, Y.; Huang, J.; Zhang, H.; Liu, C. C., Highly sensitive electrochemical analysis of tunnel structured MnO2 nanoparticle-based sensors on the oxidation of nitrite. Sens. Actuator B-Chem. 2019, 281, 746-750.
    58. Saputra, E.; Muhammad, S.; Sun, H.; Ang, H. M.; Tadé, M. O.; Wang, S., Different Crystallographic One-dimensional MnO2 Nanomaterials and Their Superior Performance in Catalytic Phenol Degradation. Environ. Sci. Technol. 2013, 47 (11), 5882-5887.
    59. Liang, S.; Teng, F.; Bulgan, G.; Zong, R.; Zhu, Y., Effect of Phase Structure of MnO2 Nanorod Catalyst on the Activity for CO Oxidation. J. Phys. Chem. C. 2008, 112 (14), 5307-5315.
    60. Leong, Z. Y.; Yang, H. Y., A Study of MnO2 with Different Crystalline Forms for Pseudocapacitive Desalination. ACS Appl. Mater. Interfaces 2019, 11 (14), 13176-13184.
    61. Su, X.; Yang, X.; Yu, L.; Cheng, G.; Zhang, H.; Lin, T.; Zhao, F.-H., A facile one-pot hydrothermal synthesis of branched α-MnO2 nanorods for supercapacitor application. CrystEngComm 2015, 17 (31), 5970-5977.
    62. Shao, J.; Li, W.; Zhou, X.; Hu, J., Magnetic-field-assisted hydrothermal synthesis of 2 × 2 tunnels of MnO2 nanostructures with enhanced supercapacitor performance. CrystEngComm 2014, 16 (43), 9987-9991.
    63. Wang, H.; Gao, Q.; Hu, J., Asymmetric capacitor based on superior porous Ni–Zn–Co oxide/hydroxide and carbon electrodes. J. Power Sources 2010, 195 (9), 3017-3024.
    64. Soserov, L.; Stoyanova, A.; Boyadzhieva, T.; Koleva, V.; Kalapsazova, M.; Stoyanova, R., Nickel-manganese structured and multiphase composites as electrodes for hybrid supercapacitors. Electrochim. Acta 2018, 283, 1063-1071.
    65. Wang, H.; Pan, Q.; Wang, X.; Yin, G.; Zhao, J., Improving electrochemical performance of NiO films by electrodeposition on foam nickel substrates. J. Appl. Electrochem. 2009, 39 (9), 1597-1602.
    66. Maiti, S.; Pramanik, A.; Mahanty, S., Interconnected Network of MnO2 Nanowires with a “Cocoonlike” Morphology: Redox Couple-Mediated Performance Enhancement in Symmetric Aqueous Supercapacitor. ACS Appl. Mater. Interfaces 2014, 6 (13), 10754-10762.
    67. Tan, D. Z. W.; Cheng, H.; Nguyen, S. T.; Duong, H. M., Controlled synthesis of MnO2/CNT nanocomposites for supercapacitor applications. Mater. Technol. 2014, 29 (sup4), A107-A113.
    68. Giri, S.; Ghosh, D.; Kharitonov, A. P.; Das, C. K., Study of Copper Ferrite Nanowire Formation in Presence of Carbon Nanotubes and Influence of Fluorination on High Performance Supercapacitor Energy Storage Application. Funct. Mater. Lett. 2012, 05 (04), 1250046.
    69. Xu, K.; Li, S.; Yang, J.; Hu, J., Hierarchical hollow MnO2 nanofibers with enhanced supercapacitor performance. J. Colloid Interface Sci. 2018, 513, 448-454.
    70. Lang, X.; Hirata, A.; Fujita, T.; Chen, M., Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors. Nat. Nanotechnol. 2011, 6, 232.
    71. Hareesh, K.; Shateesh, B.; Joshi, R. P.; Williams, J. F.; Phase, D. M.; Haram, S. K.; Dhole, S. D., Ultra high stable supercapacitance performance of conducting polymer coated MnO 2 nanorods/rGO nanocomposites. RSC Adv. 2017, 7 (32), 20027-20036.
    72. Li, Y.; Liu, Y.; Guo, L.; Ji, X.; Xiong, C.; Zhao, Z.; Song, Q., Synthesis of hierachical bio-inspired pine needle-shaped MnO2/CNTs/carbon cloth composite as highly cycling stable symmetrical supercapacitor. Int. J. Electrochem. Sci. 2017, 12 (6), 4733-4744.
    73. Gambou-Bosca, A.; Bélanger, D., Chemical Mapping and Electrochemical Performance of Manganese Dioxide/Activated Carbon Based Composite Electrode for Asymmetric Electrochemical Capacitor. J. Electrochem. Soc. 2015, 162, A5115-A5123.
    74. Agartan, L.; Hayes-Oberst, B.; Byles, B. W.; Akuzum, B.; Pomerantseva, E.; Caglan Kumbur, E., Influence of operating conditions and cathode parameters on desalination performance of hybrid CDI systems. Desalination 2019, 452, 1-8.
    75. Chen, L.; Sun, L.-J.; Luan, F.; Liang, Y.; Li, Y.; Liu, X.-X., Synthesis and pseudocapacitive studies of composite films of polyaniline and manganese oxide nanoparticles. J. Power Sources 2010, 195 (11), 3742-3747.
    76. Zolfaghari, A.; Naderi, H. R.; Mortaheb, H. R., Carbon black/manganese dioxide composites synthesized by sonochemistry method for electrochemical supercapacitors. J. Electroanal. Chem. 2013, 697, 60-67.
    77. Moalleminejad, M.; Chung, D. D. L., Dielectric constant and electrical conductivity of carbon black as an electrically conductive additive in a manganese-dioxide electrochemical electrode, and their dependence on electrolyte permeation. Carbon 2015, 91, 76-87.
    78. Frysz, C. A.; Shui, X.; Chung, D. D. L., Carbon filaments and carbon black as a conductive additive to the manganese dioxide cathode of a lithium electrolytic cell. J. Power Sources 1996, 58 (1), 41-54.
    79. Lu, W.; Chung, D. D. L., A comparative study of carbons for use as an electrically conducting additive in the manganese dioxide cathode of an electrochemical cell. Carbon 2002, 40 (3), 447-449.
    80. Zhang, B.; Fu, R.; Zhang, M.; Dong, X.; Zhao, B.; Wang, L.; Pittman, C. U., Studies of the vapor-induced sensitivity of hybrid composites fabricated by filling polystyrene with carbon black and carbon nanofibers. Compos. Part A Appl. Sci. Manuf. 2006, 37 (11), 1884-1889.
    81. Fujigaya, T.; Hirata, S.; Berber, M. R.; Nakashima, N., Improved Durability of Electrocatalyst Based on Coating of Carbon Black with Polybenzimidazole and their Application in Polymer Electrolyte Fuel Cells. ACS Appl. Mater. Interfaces 2016, 8 (23), 14494-14502.
    82. Hsieh, C.-T.; Teng, H., Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics. Carbon 2002, 40 (5), 667-674.
    83. Gao, X.; Omosebi, A.; Landon, J.; Liu, K., Dependence of the Capacitive Deionization Performance on Potential of Zero Charge Shifting of Carbon Xerogel Electrodes during Long-Term Operation. J. Electrochem. Soc. 2014, 161 (12), E159-E166.
    84. Zhang, H.; Liang, P.; Bian, Y.; Sun, X.; Ma, J.; Jiang, Y.; Huang, X., Enhancement of salt removal in capacitive deionization cell through periodically alternated oxidation of electrodes. Sep. Purif. Technol. 2018, 194, 451-456.
    85. Gao, X.; Porada, S.; Omosebi, A.; Liu, K. L.; Biesheuvel, P. M.; Landon, J., Complementary surface charge for enhanced capacitive deionization. Water Res. 2016, 92, 275-282.
    86. Ensafi, A. A.; Ahmadi, N.; Rezaei, B., Electrochemical preparation and characterization of a polypyrrole/nickel-cobalt hexacyanoferrate nanocomposite for supercapacitor applications. RSC Adv. 2015, 5 (111), 91448-91456.
    87. Işıkel Şanlı, L.; Bayram, V.; Ghobadi, S.; Düzen, N.; Alkan Gürsel, S., Engineered catalyst layer design with graphene-carbon black hybrid supports for enhanced platinum utilization in PEM fuel cell. Int. J. Hydrog. Energy 2017, 42 (2), 1085-1092.
    88. Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquérol, J.; Siemieniewska, T., Reporting Physisorption Data for Gas/Solid Systems With Special Reference to the Determination of Surface Area and Porosity. Pure & Appl. Chem. 1985, 57, 603-619.
    89. Schilling, S.; Janssen, A.; Zaluzec, N. J.; Burke, M. G., Practical Aspects of Electrochemical Corrosion Measurements During In Situ Analytical Transmission Electron Microscopy (TEM) of Austenitic Stainless Steel in Aqueous Media. Microsc. Microanal. 2017, 23 (4), 741-750.
    90. Wang, B.; Qiu, J.; Feng, H.; Wang, N.; Sakai, E.; Komiyama, T., Preparation of MnO2/carbon nanowires composites for supercapacitors. Electrochim. Acta 2016, 212, 710-721.
    91. Wang, K.; Gao, S.; Du, Z.; Yuan, A.; Lu, W.; Chen, L., MnO2-Carbon nanotube composite for high-areal-density supercapacitors with high rate performance. J. Power Sources 2016, 305, 30-36.
    92. Rommerskirchen, A.; Kalde, A.; Linnartz, C. J.; Bongers, L.; Linz, G.; Wessling, M., Unraveling charge transport in carbon flow-electrodes: Performance prediction for desalination applications. Carbon 2019, 145, 507-520.
    93. Smith, E. C.; Ellis, C. L. C.; Javaid, H.; Renna, L. A.; Liu, Y.; Russell, T. P.; Bag, M.; Venkataraman, D., Interplay between Ion Transport, Applied Bias, and Degradation under Illumination in Hybrid Perovskite p-i-n Devices. J. Phys. Chem. C. 2018, 122 (25), 13986-13994.
    94. Adamson, A. W., Textbook of Physical Chemistry. London: Academic Press inc.: 1973.
    95. Yu, J.; Jo, K.; Kim, T.; Lee, J.; Yoon, J., Temporal and spatial distribution of pH in flow-mode capacitive deionization and membrane capacitive deionization. Desalination 2018, 439, 188-195.
    96. Liu, Y.; Jiang, Z.; Zhang, X.; Shen, P. K., Ultrathin porous Bi5O7X (X = Cl, Br, I) nanotubes for effective solar desalination. J. Mater. Chem. A 2018, 6 (41), 20037-20043.
    97. Tang, W.; He, D.; Zhang, C.; Kovalsky, P.; Waite, T. D., Comparison of Faradaic reactions in capacitive deionization (CDI) and membrane capacitive deionization (MCDI) water treatment processes. Water Res. 2017, 120, 229-237.
    98. Divyapriya, G.; Vijayakumar, K. K.; Nambi, I., Development of a novel graphene/Co3O4 composite for hybrid capacitive deionization system. Desalination 2019, 451, 102-110.
    99. Ye, Z.; Li, T.; Ma, G.; Peng, X.; Zhao, J., Morphology controlled MnO2 electrodeposited on carbon fiber paper for high-performance supercapacitors. J. Power Sources 2017, 351, 51-57.
    100. Birdi, K. S., Handbook of Surface and Colloid Chemistry. CRC Press: 2015.

    QR CODE