研究生: |
劉人榮 Liu, Jen-Jung |
---|---|
論文名稱: |
一個十位元每秒二億次取樣帶冗餘容錯連續漸進式類比數位轉換器 A 10-bit 200MS/s SAR-ADC with Digital Error Correction |
指導教授: |
朱大舜
Chu, Ta-Shun 彭朋瑞 Peng, Pen-Jui |
口試委員: |
吳仁銘
WU, JEN-MING 王毓駒 Wang, Yu-Jiu |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2023 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 58 |
中文關鍵詞: | 類比數位轉換器 、65奈米 、連續漸進式類比數位轉換器 |
外文關鍵詞: | Analog-to-Digital Converter(ADC), 65 nanometer, successive approximation Analog-to-Digital Converter(SAR ADC) |
相關次數: | 點閱:44 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技的演進,類比數位轉器在各方面的應用都非常多,在商業用上特別注重功耗,在此已經有許多相關研究,本論文實現200MS/s 10位元的連續漸進式類比數位轉換器,選擇其架構原因是在中高速和中高解析度是最省電的,在設計過程中也會提到此單一架構下無法提高速度和解析度的原因。
本論文採用台積電所提供之六十五奈米 CMOS 製程進行模擬設計,論文開頭為介紹類比數位轉換器會使用到的相關參數和專有名詞,在觀察模擬結果時能夠快速判斷轉換器的性能結果,接著介紹不同的轉換器架構;下一章討論到連續漸進式類比數位轉換器的操作原理和相關應用技術,也簡單陳述其限制;第四章則說明電路的實現,以及設計考量;第五章呈現模擬結果;最後做總結和附上參考資料。
With the evolution of technology, the application of analog-to-digital converter (ADC) is widespread in various fields, with particular emphasis on power consumption in commercial use. There have been many related studies in this area. In this thesis, a 200MS/s 10-bit successive approximation ADC (SAR ADC) is implemented, and the chosen architecture is known to be the most power-efficient for medium-high speed and medium-high resolution applications. The reasons for the inability to improve speed and resolution under this single architecture will also be discussed in the design process.
The thesis utilizes the 65nm CMOS process provided by TSMC for simulation and design. The introduction of the thesis provides relevant parameters and proprietary terms used in ADC design, which enables quick assessment of the performance results when observing the simulation results. Different ADC architectures are then introduced. The next chapter discusses the operating principles and related techniques of successive approximation ADCs, as well as their limitations. The fourth chapter explains the circuit implementation and design considerations. The fifth chapter presents the simulation results. Finally, conclusions are drawn and references are included.
[ 1 ] C. -C. Liu, S. -J. Chang, G. -Y. Huang and Y. -Z. Lin, "A 10-bit 50-MS/s SAR ADC With a Monotonic Capacitor Switching Procedure," in IEEE Journal of Solid-State Circuits, vol. 45, no. 4, pp. 731-740, April 2010, doi: 10.1109/JSSC.2010.2042254.
[ 2 ] Y. Zhu et al., "A 10-bit 100-MS/s Reference-Free SAR ADC in 90 nm CMOS," in IEEE Journal of Solid-State Circuits, vol. 45, no. 6, pp. 1111-1121, June 2010, doi: 10.1109/JSSC.2010.2048498.
[ 3 ] J. Guerber, H. Venkatram, T. Oh and U. -K. Moon, "Enhanced SAR ADC energy efficiency from the early reset merged capacitor switching algorithm," 2012 IEEE International Symposium on Circuits and Systems (ISCAS), Seoul, Korea (South), 2012, pp. 2361-2364, doi: 10.1109/ISCAS.2012.6271770.
[ 4 ] G. -Y. Huang, S. -J. Chang, C. -C. Liu and Y. -Z. Lin, "10-bit 30-MS/s SAR ADC Using a Switchback Switching Method," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 21, no. 3, pp. 584-588, March 2013, doi: 10.1109/TVLSI.2012.2190117.
[ 5 ] G. -Y. Huang, S. -J. Chang, C. -C. Liu and Y. -Z. Lin, "A 1-µW 10-bit 200-kS/s SAR ADC With a Bypass Window for Biomedical Applications," in IEEE Journal of Solid-State Circuits, vol. 47, no. 11, pp. 2783-2795, Nov. 2012, doi: 10.1109/JSSC.2012.221763
[ 6 ] T. Ogawa, H. Kobayashi, M. Hotta, Y. Takahashi, Hao San and Nobukazu Takai, "SAR ADC algorithm with redundancy," APCCAS 2008 - 2008 IEEE Asia Pacific Conference on Circuits and Systems, Macao, China, 2008, pp. 268-271, doi: 10.1109/APCCAS.2008.4746011
[ 7 ] C. -C. Liu et al., "A 10b 100MS/s 1.13mW SAR ADC with binary-scaled error compensation," 2010 IEEE International Solid-State Circuits Conference - (ISSCC), San Francisco, CA, USA, 2010, pp. 386-387, doi: 10.1109/ISSCC.2010.5433970.
[ 8 ] F. Kuttner, "A 1.2V 10b 20MSample/s non-binary successive approximation ADC in 0.13/spl mu/m CMOS," 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315), San Francisco, CA, USA, 2002, pp. 176-177 vol.1, doi: 10.1109/ISSCC.2002.992993.
[ 9 ] J. -H. Tsai et al., "A 0.003 mm$^{2}$ 10 b 240 MS/s 0.7 mW SAR ADC in 28 nm CMOS With Digital Error Correction and Correlated-Reversed Switching," in IEEE Journal of Solid-State Circuits, vol. 50, no. 6, pp. 1382-1398, June 2015, doi: 10.1109/JSSC.201
[ 10 ] B. Razavi, "The Design of a Bootstrapped Sampling Circuit [The Analog Mind]," in IEEE Solid-State Circuits Magazine, vol. 13, no. 1, pp. 7-12, Winter 2021, doi: 10.1109/MSSC.2020.3036143.
[ 11 ] B. Razavi, "The Bootstrapped Switch [A Circuit for All Seasons]," in IEEE Solid-State Circuits Magazine, vol. 7, no. 3, pp. 12-15, Summer 2015, doi: 10.1109/MSSC.2015.2449714.
[ 12 ] B. Razavi, "The StrongARM Latch [A Circuit for All Seasons]," in IEEE Solid-State Circuits Magazine, vol. 7, no. 2, pp. 12-17, Spring 2015, doi: 10.1109/MSSC.2015.2418155.
[ 13 ] B. Razavi, "The Design of a Comparator [The Analog Mind]," in IEEE Solid-State Circuits Magazine, vol. 12, no. 4, pp. 8-14, Fall 2020, doi: 10.1109/MSSC.2020.3021865.
[ 14 ] T. Sepke, P. Holloway, C. G. Sodini and H. -S. Lee, "Noise Analysis for Comparator-Based Circuits," in IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 56, no. 3, pp. 541-553, March 2009, doi: 10.1109/TCSI.2008.2002547.
[ 15 ] P. M. Figueiredo and J. C. Vital, "Kickback noise reduction techniques for CMOS latched comparators," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53, no. 7, pp. 541-545, July 2006, doi: 10.1109/TCSII.2006.875308.