研究生: |
馬之雅 Khakifirooz, Marzieh |
---|---|
論文名稱: |
實現工業4.0智慧製造 之智能決策支援系統架構:以半導體製造案例 A Framework for Intelligent Decision Support System for Smart Manufacturing to Empower Industry 4.0: The Illustration of Semiconductor Manufacturing |
指導教授: |
簡禎富
Chien, Chen Fu |
口試委員: |
吳建瑋
Wang, Hung Kai |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 139 |
中文關鍵詞: | 工業4.0 、智能製造 、半導體產業 、決策支持系統 、產量增加 、先進的過程控制 、智能決策 、基於學習的決策 、博弈論 、貝葉斯推論 、支持向量回歸 |
外文關鍵詞: | Industry 4.0, Smart Manufacturing, Semiconductor Industry, Decision Support System, Yield Enhancement, Advanced Process Control, Intelligent Decision Making, Learning-Based Decision Making, Game Theory, Bayesian Inference, Support Vector Regression |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著資通訊技術、人工智慧以及大數據分析的進步並運用數據支援決策,智慧製造應用之可行性與重要性日益增加。因此,在全球智慧製造需求的驅動下,半導體產業是少數處於成長模式的關鍵產業之一。藉由製造生產設備之模擬、虛實整合系統(CPS,Cyber-Physical Systems)以及分散式決策,並將其整合入智慧工廠,可成為降低成本、提高生產力以及產品品質的基石,同時此形式之整合也可能對工業界帶來執行上的挑戰。舉例來說,量測感應儀器、機器人和CPS的資料流可以使製造更加智慧。相對的,對智慧平台之需求也將增加,智慧平台透過建模、優化和決策傳遞製造數據的價值,故此類需求可能會大幅增加。
本研究以數據驅動決策與優化,並為半導體工業之智慧製造設計智慧決策支援系統為目標,著眼於半導體工業智慧決策支援系統之設計與需求研究,關注數據支援決策和優化應用。此外,本研究以學習演算法為主軸探討兩個晶圓製造過程中的決策議題分別為良率提升之要因檢測以及高混合擾動系統的先進製程控制的設計。本研究藉由實證研究與討論實務的智能決策支援系統的應用與發展,並討論未來研究方向。
With advances in information and telecommunication technologies, Artificial Intelligent, big data, and data-driven decision making, smart manufacturing can be an essential component of competitive advantages and sustainable development. In the era of the smart world, the semiconductor industry is one of the few global industries that are in a growth mode to smartness due to worldwide demand. The promising significant opportunities to reduce cost, boost productivity, and improve quality in wafer manufacturing are based on the integration or combination of simulated replicas of actual equipment, Cyber-Physical Systems and regionalized or decentralized decision making into a smart factory. However, this integration also presents the industry with novel unique challenges. The stream of the data from sensors, robots, and Cyber-Physical Systems can aid to make the manufacturing smart. Therefore, there is an increasing need for designing a smart platform for modeling, optimization, and decision making to the value delivery from manufacturing data. This research aims to design an intelligent decision support system for the semiconductor industry with a focus on data enabled decision making and optimization applications. We investigate on design and essential needs for the foundation of an intelligent decision support system for smart manufacturing emphasizing on the semiconductor industry. Thereafter, a number of sophisticated challenges of decision making in the wafer fabrication process, root cause detection for yield enhancement, and design of advanced process control for the high-mixed disturbed system are discussed with a focus on learning based algorithm. We conclude this research by discussing research directions for future studies.
Aarts, E. & Marzano, S. (2003), The new every day: Views on ambient intelligence, 010 Publishers.
Ahmadi, B., Nourisola, H. & Tavakoli, S. (2018), ‘Robust adaptive sliding mode control design for uncertain stochastic systems with time-varying delay’, International Journal of Dynamics and Control 6(1), 413–424.
Amayri, O. & Bouguila, N. (2016), ‘A Bayesian analysis of spherical pattern based on finite langevin mixture’, Applied Soft Computing 38, 373–383.
Andrieu, C., De Freitas, N., Doucet, A. & Jordan, M. I. (2003), ‘An introduction to MCMC for machine learning’, Machine learning 50(1-2), 5–43.
Argote, L., Epple, D. N. et al. (1990), ‘Learning curves in manufacturing’, Science 247(4945), 920–924.
Asmundsson, J., Rardin, R. L. & Uzsoy, R. (2006), ‘Tractable nonlinear production planning models for semiconductor wafer fabrication facilities’, IEEE Transactions on Semiconductor Manufacturing 19(1), 95–111.
Åström, K. J. & Wittenmark, B. (2013), Adaptive control, Courier Corporation.
Backus, P., Janakiram, M., Mowzoon, S., Runger, C. & Bhargava, A. (2006), ‘Factory cycle-time prediction with a data-mining approach’, IEEE Transactions on Semiconductor Manufacturing 19(2), 252–258.
Baheti, R. & Gill, H. (2011), ‘Cyber-physical systems’, The impact of control technology 12, 161–166.
Bahinipati, B. K. & Deshmukh, S. (2012), ‘E-markets and supply chain collaboration: a literature-based review of contributions with specific reference to the semiconductor industries’, Logistics Research 4(1-2), 19–38.
Balakrishnan, N. (2014), ‘Continuous multivariate distributions’, Wiley StatsRef: Statistics Reference Online.
Balasubramanian, H., Mönch, L., Fowler, J. & Pfund, M. (2004), ‘Genetic algorithm based scheduling of parallel batch machines with incompatible job families to minimize total weighted tardiness’, International Journal of Production Research 42(8), 1621–1638.
Basak, D., Pal, S. & Patranabis, D. C. (2007), ‘Support vector regression’, Neural Information Processing-Letters and Reviews 11(10), 203–224.
Bermon, S. & Hood, S. J. (1999), ‘Capacity optimization planning system (caps)’, Interfaces 29(5), 31–50.
Bode, C., Ko, B. & Edgar, T. (2004), ‘Run-to-run control and performance monitoring of overlay in semiconductor manufacturing’, Control engineering practice 12(7), 893–900.
Braha, D. & Shmilovici, A. (2002), ‘Data mining for improving a cleaning process in the semiconductor industry’, IEEE transactions on semiconductor manufacturing 15(1), 91–101.
Breiman, L. (2001), ‘Random forests’, Machine learning 45(1), 5–32.
Brenner, T. & Vriend, N. J. (2006), ‘On the behavior of proposers in ultimatum games’, Journal of Economic Behavior & Organization 61(4), 617–631.
Brodsky, A., Krishnamoorthy, M., Menascé, D. A., Shao, G. & Rachuri, S. (2014), Toward smart manufacturing using decision analytics, in ‘Big Data, IEEE International Conference on’, IEEE, pp. 967–977.
Burstein, F. & Holsapple, C. W. (2008), Handbook on decision support systems 2: variations, Springer Science & Business Media.
Callarman, T., Fowler, J., Gel, E., Pfund, M. & Shunk, D. (2004), Creating a research agenda framework for semiconductor supply network integration, in ‘Evolution of Supply Chain Management’, Springer, pp. 161–187.
Camerer, C. F., Ho, T.-H. & Chong, J. K. (2015), ‘A psychological approach to strategic thinking in games’, Current Opinion in Behavioral Sciences 3, 157–162.
Centobelli, P., Cerchione, R. & Esposito, E. (2017a), ‘Environmental sustainability in the service industry of transportation and logistics service providers: Systematic literature review and research directions’, Transportation Research Part D: Transport and Environment 53, 454–470.
Centobelli, P., Cerchione, R. & Esposito, E. (2017b), ‘Knowledge management in startups: systematic literature review and future research agenda’, Sustainability 9(3), 361.
Chambouleyron, I., Martinez, J., Moretti, A. & Mulato, M. (1997), ‘Retrieval of optical constants and thickness of thin films from transmission spectra’, Applied Optics 36(31), 8238–8247.
Chandru, V., Lee, C.-Y. & Uzsoy, R. (1993), ‘Minimizing total completion time on batch processing machines’, International Journal of Production Research 31(9), 2097–2121.
Chang, P.-C., Hieh, J.-C. & Liao, T. W. (2005), ‘Evolving fuzzy rules for due-date assignment problem in semiconductor manufacturing factory’, Journal of Intelligent Manufacturing 16(4-5), 549–557.
Chang, P.-C. & Liao, T. W. (2006), ‘Combining som and fuzzy rule base for flow time prediction in semiconductor manufacturing factory’, Applied Soft Computing 6(2), 198–206.
Chang, Y.-C. & Mastrangelo, C. (2011), ‘Addressing multicollinearity in semiconductor manufacturing’, Quality and Reliability Engineering International 27(6), 843–854.
Chatterjee, A., Nurani, R., Seshadri, S. & Shanthikumar, J. (1997), Role of yield management in fabless-foundry partnerships, in ‘Semiconductor Manufacturing, IEEE International Symposium on’, IEEE, pp. P31–P34.
Chen, R.-S., Tsai, Y.-S. & Chang, C.-C. (2006), Design and implementation of an intelligent manufacturing execution system for semiconductor manufacturing industry, in ‘Industrial Electronics, 2006 IEEE International Symposium on’, Vol. 4, IEEE, pp. 2948–2953.
Chen, S.-S. (1992), Intelligent control of semiconductor manufacturing processes, in ‘Intelligent modeling, diagnosis and control of manufacturing processes’, World Scientific, pp. 211–230.
Chen, T. (2013), ‘Forecasting the yield of a semiconductor product with a collaborative intelligence approach’, Applied Soft Computing 13(3), 1552–1560.
Chen, X.-W. & Lin, X. (2014), ‘Big data deep learning: challenges and perspectives’, IEEE access 2, 514–525.
Chen, Y., Moore, K. L. & Ahn, H.-S. (2012), Iterative learning control, in ‘Encyclopedia of the Sciences of Learning’, Springer, pp. 1648–1652.
Cheng, X., Ren, X., Ma, S. & Li, S. (2015), ‘A modeling method based on artificial neural network with monotonicity knowledge as constraints’, Chemometrics and Intelligent Laboratory Systems 145, 93–102.
Chiang, Y.-C. & Cheng, C.-C. (2018), ‘Terminal adaptive output feedback variable structure control’, Institution of Engineering and Technology Control Theory & Applications 12(10), 1376–1383.
Chien, C.-F., Chang, K.-H. & Chen, C.-P. (2003), ‘Design of a sampling strategy for measuring and compensating for overlay errors in semiconductor manufacturing’, International Journal of Production Research 41(11), 2547–2561.
Chien, C.-F., Chang, K.-H., Chen, C.-P. & Lin, S.-L. (2005), ‘Overlay error model, sampling strategy and associated equipment for implementation’. US Patent 6,975,974.
Chien, C.-F., Chen, Y.-J., Hsu, C.-Y. & Wang, H.-K. (2014), ‘Overlay error compensation using advanced process control with dynamically adjusted proportional-integral r2r controller’, IEEE Transactions on Automation Science and Engineering 11(2), 473–484.
Chien, C.-F. & Chuang, S.-C. (2014), ‘A framework for root cause detection of sub-batch processing system for semiconductor manufacturing big data analytics’, IEEE Transactions on Semiconductor Manufacturing 27(4), 475–488.
Chien, C.-F., Dauzère-Pérès, S., Ehm, H., Fowler, J. W., Jiang, Z., Krishnaswamy, S., Lee, T.-E., Moench, L. & Uzsoy, R. (2011), ‘Modelling and analysis of semiconductor manufacturing in a shrinking world: challenges and successes’, European Journal of Industrial Engineering
5(3), 254–271.
Chien, C.-F. & Deng, J.-F. (2004), ‘A container packing support system for determining and visualizing container packing patterns’, Decision Support Systems 37(1), 23–34.
Chien, C.-F., Diaz, A. C. & Lan, Y.-B. (2014), ‘A data mining approach for analyzing semiconductor mes and fdc data to enhance overall usage effectiveness’, International Journal of Computational Intelligence Systems 7(sup2), 52–65.
Chien, C.-F. & Hsu, C.-Y. (2011), ‘Unison analysis to model and reduce step-and-scan overlay errors for semiconductor manufacturing’, Journal of Intelligent Manufacturing 22(3), 399–412.
Chien, C.-F., Wang, W.-C. & Cheng, J.-C. (2007), ‘Data mining for yield enhancement in semiconductor manufacturing and an empirical study’, Expert Systems with Applications 33(1), 192–198.
Chivukula, A. S. & Liu, W. (2017), Adversarial learning games with deep learning models, in ‘Neural Networks, International Conference on’, IEEE, pp. 2758–2767.
Chong, I.-G., Albin, S. L. & Jun, C.-H. (2007), ‘A data mining approach to process optimization without an explicit quality function’, IIE Transactions 39(8), 795–804.
Chong, I.-G. & Jun, C.-H. (2005), ‘Performance of some variable selection methods when multicollinearity is present’, Chemometrics and intelligent laboratory systems 78(1-2), 103–112.
Choudhary, A. K., Harding, J. A. & Tiwari, M. K. (2009), ‘Data mining in manufacturing: a review based on the kind of knowledge’, Journal of Intelligent Manufacturing 20(5), 501.
Congdon, P. (2005), Bayesian models for categorical data, John Wiley & Sons.
Crossan, M. M., Lane, H. W. & White, R. E. (1999), ‘An organizational learning framework: From intuition to institution’, Academy of management review 24(3), 522–537.
Da Silva, F. D. C., De Oliveira, J. B. & De Araujo, A. D. (2017), Robust interval adaptive poleplacement controller based on variable structure systems theory, in ‘Systems Engineering, International Conference on’, IEEE, pp. 45–54.
Das, B., Krishnan, N. C. & Cook, D. J. (2015), ‘Racog and wracog: Two probabilistic oversampling techniques’, IEEE transactions on knowledge and data engineering 27(1), 222.
De Ron, A. & Rooda, J. (2005), ‘Equipment effectiveness: Oee revisited’, IEEE Transactions on Semiconductor Manufacturing 18(1), 190–196.
Dequeant, K., Vialletelle, P., Lemaire, P. & Espinouse, M.-L. (2016), A literature review on variability in semiconductor manufacturing: the next forward leap to industry 4.0, in ‘Winter Simulation Conference’, IEEE Press, pp. 2598–2609.
Duarte-Mermoud, M. A., Aguila-Camacho, N., Gallegos, J. A. & Travieso-Torres, J. C. (2018), Fractional-order model reference adaptive controllers for first-order integer plants, in ‘New Perspectives and Applications of Modern Control Theory’, Springer, pp. 121–151.
El Chemali, C., Freudenberg, J., Hankinson, M., Collison, W. & Ni, T. (2003), ‘Critical dimension control of a plasma etch process by integrating feedforward and feedback run-to-run control’, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena 21(6), 2304–2312.
Erev, I. & Roth, A. E. (1998), ‘Predicting how people play games: Reinforcement learning in experimental games with unique, mixed strategy equilibria’, American economic review 88(4), 848–881.
Famili, A., Shen, W.-M., Weber, R. & Simoudis, E. (1997), ‘Data preprocessing and intelligent data analysis’, Intelligent data analysis 1(1), 3–23.
Fan, S.-K. S. (2000), ‘Quality improvement of chemical-mechanical wafer planarization process in semiconductor manufacturing using a combined generalized linear modelling-non-linear programming approach’, International Journal of Production Research 38(13), 3011–3029.
Fan, Y.-C. & Chang, J.-Y. J. (2018), Equipment communication architecture for smart manufacturing, in ‘Smart Manufacturing, Industrial & Logistics Engineering, IEEE International Conference on’, IEEE, pp. 27–32.
Fang, C., Liu, X., Pardalos, P. M. & Pei, J. (2016), ‘Optimization for a three-stage production system in the internet of things: procurement, production and product recovery, and acquisition’, The International Journal of Advanced Manufacturing Technology 83(5-8), 689–710.
Fersini, E., Messina, E. & Pozzi, F. A. (2017), ‘Earthquake management: a decision support system based on natural language processing’, Journal of Ambient Intelligence and Humanized Computing 8(1), 37–45.
Filip, F. G. (2008), ‘Decision support and control for large-scale complex systems’, Annual Reviews in Control 32(1), 61–70.
Fordyce, K., Milne, R. J., Wang, C.-T. & Zisgen, H. (2015a), ‘Modeling and integration of planning, scheduling, and equipment configuration in semiconductor manufacturing: Part i. review of successes and opportunities’, International Journal of Industrial Engineering:
Theory, Applications and Practice 22(5), 575–600.
Fordyce, K., Milne, R. J., Wang, C.-T. & Zisgen, H. (2015b), ‘Modeling and integration of planning, scheduling, and equipment configuration in semiconductor manufacturing: Part II. fab capability assessment’, International Journal of Industrial Engineering: Theory, Applications
and Practice 22(5), 601–617.
Fowler, J. W., Mönch, L. & Ponsignon, T. (2015), ‘Discrete-event simulation for semiconductor wafer fabrication facilities: A tutorial.’, International Journal of Industrial Engineering 22(5).
Frederix, F. (1996), Planning and scheduling multi-site semiconductor production chains: a survey of needs, current practices, and integration issues, in ‘Proceedings of the conference on integration in manufacturing, Galway, Ireland’, pp. 107–116.
Fridman, E. (2014), Introduction to time-delay systems: Analysis and control, Springer.
Friedman, J. H. (1991), ‘Multivariate adaptive regression splines’, The Annals of Statistics 19(1), 1–67.
Friedman, J. H. (2001), ‘Greedy function approximation: a gradient boosting machine’, Annals of Statistics 29(5), 1189–1232.
Gamez, D. (2008), ‘Progress in machine consciousness’, Consciousness and cognition 17(3), 887–910.
Garcia-Donato, G. & Martinez-Beneito, M. A. (2013), ‘On sampling strategies in Bayesian variable selection problems with large model spaces’, Journal of the American Statistical Association 108(501), 340–352.
Gardner, M. & Bieker, J. (2000), Data mining solves tough semiconductor manufacturing problems, in ‘Proceedings of the sixth ACM SIGKDD international conference on Knowledge discovery and data mining’, ACM, pp. 376–383.
Ge, S. S., Hang, C. C., Lee, T. H. & Zhang, T. (2013), Stable adaptive neural network control, Vol. 13, Springer Science & Business Media.
Gebus, S. & Leiviskä, K. (2009), ‘Knowledge acquisition for decision support systems on an electronic assembly line’, Expert systems with applications 36(1), 93–101.
George, E. I. & McCulloch, R. E. (1993), ‘Variable selection via Gibbs sampling’, Journal of the American Statistical Association 88(423), 881–889.
Gershenfeld, N., Krikorian, R. & Cohen, D. (2004), ‘The internet of things’, Scientific American 291(4), 76–81.
Giarratano, J. C. & Riley, G. (1989), Expert systems: principles and programming, Brooks/Cole Publishing Co.
Gittins, J. C. (1979), ‘Bandit processes and dynamic allocation indices’, Journal of the Royal Statistical Society 41(2), 148–177.
Glassey, C. R. & Weng, W. W. (1991), ‘Dynamic batching heuristic for simultaneous processing’, IEEE transactions on semiconductor manufacturing 4(2), 77–82.
Gomes, M., Silva, F., Ferraz, F., Silva, A., Analide, C. & Novais, P. (2016), Developing an ambient intelligent-based decision support system for production and control planning, in ‘International Conference on Intelligent Systems Design and Applications’, Springer, pp. 984–
994.
Gong, Q.-S., Yang, G.-K., Pan, C.-C. & Lee, M.-S. (2016), ‘Stability and control performance analysis of double EWMA controller with metrology delay’, IEEE Transactions on Semiconductor Manufacturing 29(1), 9–16.
Gong, Q., Yang, G., Pan, C. & Chen, Y. (2018), ‘Performance analysis of single EWMA controller subject to metrology delay under dynamic models’, IISE Transactions 50(2), 88–98.
Good, R. P. & Qin, S. J. (2006), ‘On the stability of MIMO EWMA run-to-run controllers with metrology delay’, IEEE Transactions on Semiconductor Manufacturing 19(1), 78–86.
Grbić, R., Slišković, D. & Nyarko, E. K. (2010), Application of pls and LS_SVM in difficult-to-measure process variable estimation, in ‘Intelligent Systems and Informatics (SISY), 2010 8th International Symposium on’, IEEE, pp. 313–318.
Guo, B.-Z. & Zhao, Z.-L. (2011), ‘On convergence of tracking differentiator’, International Journal of Control 84(4), 693–701.
Guo, B.-Z. & Zhao, Z.-L. (2016), Active disturbance rejection control for nonlinear systems: An introduction, John Wiley & Sons.
Guo, Z. (2016), Intelligent Decision-making Models for Production and Retail Operations, Springer.
Gyugyi, P., Cho, Y. M., Franklin, G. & Kailath, T. (1993), Convex optimization of wafer temperature trajectories for rapid thermal processing, in ‘Control Applications, IEEE Conference on’, IEEE, pp. 409–414.
Haddad, W. M. & Chellaboina, V. (2011), Nonlinear dynamical systems and control: a Lyapunov-based approach, Princeton University Press.
Hansen, M. H. & Harsanyi, J. C. (1967), ‘Games with incomplete information played by “Bayesian” players, I-III part I. the basic model’, Management Science 14(3), 159–182.
Harsanyi, J. C., Selten, R. et al. (1988), A general theory of equilibrium selection in games, The MIT Press.
Hatch, N. W. & Mowery, D. C. (1998), ‘Process innovation and learning by doing in semiconductor manufacturing’, Management Science 44(11-part-1), 1461–1477.
Hayes, B. (2008), ‘Cloud computing’, Communications of the ACM 51(7), 9–11.
Heirung, T. A. N., Ydstie, B. E. & Foss, B. (2017), ‘Dual adaptive model predictive control’, Automatica 80, 340–348.
Herding, R. & Mönch, L. (2016), Designing an ontology for agent-based planning and control tasks in semiconductor supply chains, in ‘OTM: The Move to Meaningful Internet Systems, International Conference on’, Springer, pp. 65–75.
Hochbaum, D. S. & Landy, D. (1997), ‘Scheduling semiconductor burn-in operations to minimize total flowtime’, Operations research 45(6), 874–885.
Hsu, C.-Y., Chien, C.-F. & Chen, P.-N. (2012), ‘Manufacturing intelligence for early warning of key equipment excursion for advanced equipment control in semiconductor manufacturing’, Journal of the Chinese Institute of Industrial Engineers 29(5), 303–313.
Hsu, S.-C. & Chien, C.-F. (2007), ‘Hybrid data mining approach for pattern extraction from wafer bin map to improve yield in semiconductor manufacturing’, International Journal of Production Economics 107(1), 88–103.
Hu, C. & Cao, H. (2016), ‘Aspect-level influence discovery from graphs’, IEEE Transactions on Knowledge and Data Engineering 28(7), 1635–1649.
Huang, M., Wang, X., Lu, Z., Ma, L., Su, H. & Wang, L. (2018), ‘Multiple models adaptive control for a class of nonlinear systems with unknown control directions’, International Journal of Control pp. 1–13.
Huang, S. H., Dismukes, J. P., Shi, J., Su, Q., Wang, G., Razzak, M. A. & Robinson, D. E. (2002), ‘Manufacturing system modeling for productivity improvement’, Journal of Manufacturing Systems 21(4), 249–259.
Huang, Y. & Xue, W. (2014), ‘Active disturbance rejection control: methodology and theoretical analysis’, ISA transactions 53(4), 963–976.
Hung, M.-H., Lin, T.-H., Cheng, F.-T. & Lin, R.-C. (2007), ‘A novel virtual metrology scheme for predicting CVD thickness in semiconductor manufacturing’, IEEE/ASME Transactions on Mechatronics 12(3), 308–316.
Hung, Y.-F. & Leachman, R. C. (1996), ‘A production planning methodology for semiconductor manufacturing based on iterative simulation and linear programming calculations’, IEEE Transactions on Semiconductor Manufacturing 9(2), 257–269.
Jacobs, J., Etman, L., Van Campen, E. & Rooda, J. (2003), ‘Characterization of operational time variability using effective process times’, IEEE Transactions on semiconductor manufacturing
16(3), 511–520.
Jang, J.-S. & Sun, C.-T. (1995), ‘Neuro-fuzzy modeling and control’, Proceedings of the IEEE 83(3), 378–406.
Jiang, P., Leng, J. & Ding, K. (2016), Social manufacturing: a survey of the state-of-the-art and future challenges, in ‘Service Operations and Logistics, and Informatics, IEEE International Conference on’, IEEE, pp. 12–17.
John Lu, Z. (2010), ‘The elements of statistical learning: data mining, inference, and prediction’, Journal of the Royal Statistical Society: Series A (Statistics in Society) 173(3), 693–694.
Kahng, A. B., Lin, B. & Nath, S. (2013), Enhanced metamodeling techniques for high-dimensional IC design estimation problems, in ‘Conference on Design, Automation, and Test in Europe’, EDA Consortium, pp. 1861–1866.
Kaklauskas, A. (2015), Intelligent decision support systems, in ‘Biometric and Intelligent Decision Making Support’, Springer, pp. 31–85.
Kalashnikova, I., van Bloemen Waanders, B., Arunajatesan, S. & Barone, M. (2014), ‘Stabilization of projection-based reduced order models for linear time-invariant systems via optimization-based eigenvalue reassignment’, Computer Methods in Applied Mechanics and Engineering 272, 251–270.
Kang, H.-Y. & Lee, A. H. (2007), ‘Priority mix planning for semiconductor fabrication by fuzzy AHP ranking’, Expert Systems with Applications 32(2), 560–570.
Kelly, A. (2003), Decision making using game theory: an introduction for managers, Cambridge University Press.
Khakifirooz, M., Chien, C. F. & Chen, Y.-J. (2018), ‘Bayesian inference for mining semiconductor manufacturing big data for yield enhancement and smart production to empower industry 4.0’, Applied Soft Computing 68, 990–999.
Khera, D., Zaghoul, M., Linholm, L. W. & Wilson, C. L. (1989), A neural network approach for classifying test structure results, in ‘Microelectronic Test Structures, International Conference
on’, IEEE, pp. 201–204.
Kim, J. S. & Leachman, R. C. (1994), ‘Decomposition method application to a large-scale linear programming WIP projection model’, European journal of operational research 74(1), 152–160.
Kim, S.-y., Godbole, A., Huang, R., Panchadhar, R. & Smari, W. W. (2004), Toward an integrated human-centered knowledge-based collaborative decision-making system, in ‘Information Reuse and Integration, IEEE International Conference on’, IEEE, pp. 394–401.
Kuncheva, L. I. (2013), ‘A bound on kappa-error diagrams for analysis of classifier ensembles’, IEEE Transactions on knowledge and data engineering 25(3), 494–501.
Kuo, H.-F. & Faricha, A. (2016), ‘Artificial neural network for diffraction based overlay measurement’, IEEE Access 4, 7479–7486.
Kusiak, A. (2000), ‘Decomposition in data mining: An industrial case study’, IEEE Transactions on electronics packaging manufacturing 23(4), 345–353.
Kusiak, A. (2001a), ‘Feature transformation methods in data mining’, IEEE Transactions on Electronics packaging manufacturing 24(3), 214–221.
Kusiak, A. (2001b), ‘Rough set theory: a data mining tool for semiconductor manufacturing’, IEEE transactions on electronics packaging manufacturing 24(1), 44–50.
Kusiak, A. (2017), ‘Smart manufacturing must embrace big data’, Nature 544(7648), 23–25.
Kwak, M., Behdad, S., Zhao, Y., Kim, H. & Thurston, D. (2011), ‘E-waste stream analysis and design implications’, Journal of Mechanical Design 133(10), 101003.
Lanckriet, G. R., Cristianini, N., Bartlett, P., Ghaoui, L. E. & Jordan, M. I. (2004), ‘Learning the kernel matrix with semidefinite programming’, Journal of Machine learning research
5(Jan), 27–72.
Lasi, H., Fettke, P., Kemper, H.-G., Feld, T. & Hoffmann, M. (2014), ‘Industry 4.0’, Business & Information Systems Engineering 6(4), 239–242.
Latorre-Biel, J.-I., Faulín, J., Juan, A. A. & Jiménez-Macías, E. (2018), ‘Petri net model of a smart factory in the frame of industry 4.0’, IFAC-PapersOnLine 51(2), 266–271.
Leachman, R. C. (1997), ‘Closed-loop measurement of equipment efficiency and equipment capacity’, IEEE Transactions on Semiconductor Manufacturing 10(1), 84–97.
Lee, C.-Y. & Chen, B.-S. (2018), ‘Mutually-exclusive-and-collectively-exhaustive feature selec-tion scheme’,Applied Soft Computing68, 961–971.
Lee, C.-Y., Uzsoy, R. & Martin-Vega, L. A. (1992), ‘Efficient algorithms for scheduling semiconductor burn-in operations’, Operations Research 40(4), 764–775.
Lee, S.-P. (2017), ‘Ewma controller with concurrent adjustment for a high-mixed production process’, Advances in Technology Innovation 2(1), 25–28.
Li, B.-H., Zhang, L., Wang, S.-L., Tao, F., Cao, J., Jiang, X., Song, X. & Chai, X. (2010), ‘Cloud manufacturing: a new service-oriented networked manufacturing model’, Computer integrated manufacturing systems 16(1), 1–7.
Little, J. D. & Graves, S. C. (2008), Little’s law, in ‘Building intuition’, Springer, pp. 81–100.
Liu, C.-W. & Chien, C.-F. (2013), ‘An intelligent system for wafer bin map defect diagnosis: An empirical study for semiconductor manufacturing’, Engineering Applications of Artificial Intelligence 26(5-6), 1479–1486.
Liu, X., Gough, A. M. & Li, J. (2018), ‘Semiconductor corner lot generation robust to process variation: Modeling and analysis’, IISE Transactions 50(2), 126–139.
Liu, X., Pei, J., Liu, L., Cheng, H., Zhou, M. & Pardalos, P. M. (2017a), Life cycle assessment in an iot environment, in ‘Optimization and Management in Manufacturing Engineering’, Springer, pp. 209–246.
Liu, X., Pei, J., Liu, L., Cheng, H., Zhou, M. & Pardalos, P. M. (2017b), Optimization and Management in Manufacturing Engineering: Resource Collaborative Optimization and Management Through the Internet of Things, Vol. 126, Springer.
Lu, B. et al. (2015), Improving process monitoring and modeling of batch-type plasma etching tools, PhD thesis, University of Texas in Austin.
Lynn, S. A., MacGearailt, N. & Ringwood, J. V. (2012), ‘Real-time virtual metrology and control for plasma etch’, Journal of Process Control 22(4), 666–676.
Mahajan, A. & Teneketzis, D. (2008), Multi-armed bandit problems, in ‘Foundations and Applications of Sensor Management’, Springer, pp. 121–151.
Mallik, S. & Harker, P. T. (2004), ‘Coordinating supply chains with competition: Capacity allocation in semiconductor manufacturing’, European Journal of Operational Research 159(2), 330–347.
Mason, S. J., Fowler, J. W. & Matthew Carlyle, W. (2002), ‘A modified shifting bottleneck heuristic for minimizing total weighted tardiness in complex job shops’, Journal of Scheduling 5(3), 247–262.
Matsui, A. (1992), ‘Best response dynamics and socially stable strategies’, Journal of Economic Theory 57(2), 343–362.
Mehta, S. V. & Uzsoy, R. (1998), ‘Minimizing total tardiness on a batch processing machine with incompatible job families’, IIE transactions 30(2), 165–178.
Meziane, F., Vadera, S., Kobbacy, K. & Proudlove, N. (2000), ‘Intelligent systems in manufacturing: current developments and future prospects’, Integrated Manufacturing Systems 11(4), 218–238.
Miller, D. J. & Fenimore, J. A. (1988), The application of advanced manufacturing technology in semiconductor fabrication, in ‘Electronic Manufacturing Technology, Design-to manufacturing Transfer Cycle, IEEE International Symposium on’, IEEE, pp. 201–205.
Mitchell, M. (1998), An introduction to genetic algorithms, MIT press.
Modha, D. S., Ananthanarayanan, R., Esser, S. K., Ndirango, A., Sherbondy, A. J. & Singh, R. (2011), ‘Cognitive computing’, Communications of the ACM 54(8), 62–71.
Mohanty, S. R., Ray, P. K., Kishor, N. & Panigrahi, B. (2013),
Classification of disturbances in hybrid dg system using modular pnn and svm’, International Journal of Electrical Power & Energy Systems 44(1), 764–777.
Mohri, M., Rostamizadeh, A. & Talwalkar, A. (2012), Foundations of machine learning, MIT press.
Mönch, L., Balasubramanian, H., Fowler, J. W. & Pfund, M. E. (2005), ‘Heuristic scheduling of jobs on parallel batch machines with incompatible job families and unequal ready times’, Computers & Operations Research 32(11), 2731–2750.
Mönch, L., Lendermann, P., McGinnis, L. F. & Schirrmann, A. (2011), ‘A survey of challenges in modeling and decision-making for discrete event logistics systems’, Computers in Industry 62(6), 557–567.
Mönch, L., Uzsoy, R. & Fowler, J. W. (2017), ‘A survey of semiconductor supply chain models part i: semiconductor supply chains, strategic network design, and supply chain simulation’, International Journal of Production Research pp. 1–22.
Moore, G. (1965), ‘Moore’s law’, Electronics Magazine 38(8), 114.
Moreau, W. M. (2012), Semiconductor lithography: principles, practices, and materials, Springer Science & Business Media.
Morse, J. (2011), ‘Advanced manufacturing partnership: Where does nanomanufacturing fit, and where should investments be made?’, National Nanomanufacturing Network Newsletter 4(11).
Moyne, J., Del Castillo, E. & Hurwitz, A. M. (2000), Run-to-run control in semiconductor manufacturing, CRC press.
Moyne, J., Samantaray, J. & Armacost, M. (2016), ‘Big data capabilities applied to semiconductor manufacturing advanced process control’, IEEE Transactions on Semiconductor Manufacturing 29(4), 283–291.
Murdock, J. L. & Hayes-Roth, B. (1991), ‘Intelligent monitoring and control of semiconductor manufacturing equipment’, IEEE Expert 6(6), 19–31.
Nijs, J. F., Szlufcik, J., Poortmans, J., Sivoththaman, S. & Mertens, R. P. (1999), ‘Advanced manufacturing concepts for crystalline silicon solar cells’, IEEE Transactions on Electron Devices 46(10), 1948–1969.
Ocalir-Akunal, E. V. (2016), A web-based decision support system (DSS) for individuals’ urban travel alternatives, in ‘Civil and Environmental Engineering: Concepts, Methodologies, Tools, and Applications’, IGI Global, pp. 576–596.
Oechsner, R., Pfeffer, M., Pfitzner, L., Binder, H., Müller, E. & Vonderstrass, T. (2002), ‘From overall equipment efficiency (oee) to overall fab effectiveness (ofe)’, Materials science in semiconductor processing 5(4-5), 333–339.
Ortega, R., Perez, J. A. L., Nicklasson, P. J. & Sira-Ramirez, H. J. (2013), Passivity-based control of Euler-Lagrange systems: mechanical, electrical and electromechanical applications, Springer Science & Business Media.
Paksoy, T., KARAOĞLAN, İ., Gökçen, H., Pardalos, P. M. & TORĞUL, B. (2016), ‘An experimental research on closed loop supply chain management with internet of things’, Journal of Economics Bibliography 3(1S), 1–20.
Pan, F. & Nagi, R. (2010), ‘Robust supply chain design under uncertain demand in agile manufacturing’, Computers & operations research 37(4), 668–683.
Paramanathan, S., Farrukh, C., Phaal, R. & Probert, D. (2004), ‘Implementing industrial sustainability: the research issues in technology management’, R&D Management 34(5), 527–537.
Pardalos, P. M. (2017), ‘Smart/green manufacturing: Data enabled decision making and optimization applications-presentation; http://www.ise.ufl.edu/cao/’.
Park, S.-J., Lee, M.-S., Shin, S.-Y., Cho, K.-H., Lim, J.-T., Cho, B.-S., Jei, Y.-H., Kim, M.-K. & Park, C.-H. (2005), ‘Run-to-run overlay control of steppers in semiconductor manufacturing systems based on history data analysis and neural network modeling’, IEEE Transactions on Semiconductor Manufacturing 18(4), 605–613.
Petersen, K., Feldt, R., Mujtaba, S. & Mattsson, M. (2008), Systematic mapping studies in software engineering, in ‘Evaluation and Assessment in Software Engineering, International Conference on’, Vol. 8, pp. 68–77.
Power, D. (2002), Categorizing decision support systems: A multidimensional approach, in ‘Decision-Making Support Systems: Achievements and Challenges for the New Decade. Hershey: Idea’, IGI Global, pp. 20–26.
Power, D. J. (2004), ‘Specifying an expanded framework for classifying and describingdecision support systems’, Communications of the Association for Information Systems 13(1), 13.
Power, D. J., Khakifirooz, M., Fathi, M. & Pardalos, P. M. (2018), ‘How can decision support aid smart manufacturing initiatives?’, http://dssresources.com.
Rico-Azagra, J., Gil-Martínez, M., Rico, R. & Maisterra, P. (2018), ‘Qft bounds for robust stability specifications defined on the open-loop function’, International Journal of Robust and Nonlinear Control 28(3), 1116–1125.
Robert, C. (2014), ‘Machine learning, a probabilistic perspective’, Chance 27(2), 62–63.
Robinson, D. C., Sanders, D. A. & Mazharsolook, E. (2015), ‘Ambient intelligence for optimal manufacturing and energy efficiency’, Assembly Automation 35(3), 234–248.
Rugh, W. J. & Shamma, J. S. (2000), ‘Research on gain scheduling’, Automatica 36(10), 1401–1425.
Rus, D. & Tolley, M. T. (2015), ‘Design, fabrication, and control of soft robots’, Nature 521(7553), 467.
Sabbaghi, M., Behdad, S. & Zhuang, J. (2016), ‘Managing consumer behavior toward on-time return of the waste electrical and electronic equipment: A game theoretic approach’, International Journal of Production Economics 182, 545–563.
Schreier, M. (2012), Modeling and adaptive control of a quadrotor, in ‘Mechatronics and Automation, International Conference on’, IEEE, pp. 383–390.
Shao, Y. E. & Hu, Y.-T. (2016), Using the ann classifier to recognize the disturbance patterns for a multivariate system, in ‘Advanced Applied Informatics, International Congress on’, IEEE, pp. 630–634.
Silber, J. B. (2006), Improving reuse of semiconductor equipment through benchmarking, standardization, and automation, Ph.D. thesis, Massachusetts Institute of Technology.
Sullivan, N. T. (1994), Semiconductor pattern overlay, in Microelectronic, Handbook of Critical Dimension Metrology and Process Control: A Critical Review’, Vol. 10274, International Society for Optics and Photonics.
Sun, L., Lu, J., Liu, Y., Huang, T., Alsaadi, F. E. & Hayat, T. (2018), ‘Variable structure controller design for boolean networks’, Neural Networks 97, 107–115.
Sun, T. & Liu, J. (2016), Predicting mems gyroscope’s random drifts using LS-SVM optimized by modified PSO, in ‘Guidance, Navigation, and Control Conference, IEEE Chinese’, IEEE, pp. 146–149.
Sun, Y., Feller, A., Shunk, D., Fowler, J., Callarman, T. & Duarte, B. (2007), Decision paradigms in the semiconductor supply chain: a survey and analysis, in ‘Automation Science and Engineering, IEEE International Conference on’, IEEE, pp. 106–110.
Swaminathan, J. M. (2000), ‘Tool capacity planning for semiconductor fabrication facilities under demand uncertainty’, European Journal of Operational Research 120(3), 545–558.
Swaminathan, J. M. (2001), ‘Enabling customization using standardized operations’, California Management Review 43(3), 125–135.
Tan, A. & Huang, J. (2016), ‘Bayesian inference for high-dimensional linear regression under mnet priors’, Canadian Journal of Statistics 44(2), 180–197.
Tan, F., Pan, T., Li, Z. & Chen, S. (2015), ‘Survey on run-to-run control algorithms in highmix semiconductor manufacturing processes’, IEEE Transactions on Industrial Informatics 11(6), 1435–1444.
Tan, Y., Moase, W., Manzie, C., Nešić, D. & Mareels, I. (2010), Extremum seeking from 1922 to 2010, in ‘Control Conference, 29th Chinese’, IEEE, pp. 14–26.
Tanaka, T., Esfahani, P. M. & Mitter, S. K. (2018), ‘Lqg control with minimum directed information: Semidefinite programming approach’, IEEE Transactions on Automatic Control 63(1), 37–52.
Tang, T. J., Chung, A., Zhao, A., Kang, R., Zhang, M., Chien, K., Yang, J. & Zhang, J. (2016), An IoT inspired semiconductor reliability test system integrated with data-mining applications, in ‘Cloud Computing and Internet of Things, International Conference on’, IEEE, pp. 111–114.
Tao, F., Zhang, L. & Laili, Y. (2016), Configurable Intelligent Optimization Algorithm, Springer.
Taroni, A. (2018), ‘Evolutionary game theory: Metric of cooperation’, Nature Physics 14(1), 7.
Tawfik, H. & Anya, O. (2015), ‘Evaluating practice-centered awareness in cross-boundary telehealth decision support systems’, Telematics and Informatics 32(3), 486–503.
Tay, K. M. & Lim, C. P. (2006), ‘Fuzzy fmea with a guided rules reduction system for prioritization of failures’, International Journal of Quality & Reliability Management 23(8), 1047–1066.
Teimoury, E. & Fathi, M. (2013), ‘An integrated operations-marketing perspective for making decisions about order penetration point in multi-product supply chain: a queuing approach’, International Journal of Production Research 51(18), 5576–5596.
Teimoury, E., Modarres, M., Khondabi, I. & Fathi, M. (2012), ‘A queuing approach for making decisions about order penetration point in multi-echelon supply chains’, The International Journal of Advanced Manufacturing Technology 63(1-4), 359–371.
Tenenbaum, J. B. & Griffiths, T. L. (2001), ‘Generalization, similarity, and Bayesian inference’, Behavioral and brain sciences 24(4), 629–640.
Teng, J. T., Mirani, R. & Sinha, A. (1988), A unified architecture for intelligent DSS, in ‘System Sciences, Decision Support, and Knowledge-Based Systems Track, International Conference on’, Vol. 3, IEEE, pp. 286–294.
Teti, R. & Kumara, S. (1997), ‘Intelligent computing methods for manufacturing systems’, Cirp Annals 46(2), 629–652.
Thrun, S. & Pratt, L. (2012), Learning to learn, Springer Science & Business Media.
Utkin, V., Guldner, J. & Shi, J. (2009), Sliding mode control in electro-mechanical systems, CRC press.
Uzsoy, R., Fowler, J. W. & Mönch, L. (2018), ‘A survey of semiconductor supply chain models part ii: demand planning, inventory management, and capacity planning’, International Journal of Production Research pp. 1–19.
Uzsoy, R., Lee, C.-Y. & Martin-Vega, L. A. (1992), ‘A review of production planning and scheduling models in the semiconductor industry part i: system characteristics, performance evaluation and production planning’, IIE transactions 24(4), 47–60.
Uzsoy, R., Lee, C.-Y. & Martin-Vega, L. A. (1994), ‘A review of production planning and scheduling models in the semiconductor industry part ii: Shop-floor control’, IIE transactions 26(5), 44–55.
Van Hee, K. M. (1978), Bayesian control of Markov chains, Mathematisch Centrum Amsterdam, The Netherlands.
Vapnik, V. (1998), Statistical learning theory. 1998, Wiley, New York.
Vassilyev, S., Kelina, A. Y., Kudinov, Y. & Pashchenko, F. (2017), ‘Intelligent control systems’, Procedia Computer Science 103, 623–628.
Wang, L. & Wang, G. (2016), ‘Big data in cyber-physical systems, digital manufacturing and industry 4.0’, International Journal of Engineering and Manufacturing (IJEM) 6(4), 1–8.
Wang, Y., Zheng, Y., Fang, H. & Wang, Y. (2014), ‘Armax model based run-to-run fault diagnosis approach for batch manufacturing process with metrology delay’, International Journal of Production Research 52(10), 2915–2930.
Weber, A. (2016), The role of models in semiconductor smart manufacturing, in ‘eManufacturing and Design Collaboration Symposium’, IEEE, pp. 1–3.
Wu, W.-M., Cheng, F.-T., Lin, T.-H., Zeng, D.-L. & Chen, J.-F. (2011), ‘Selection schemes of dual virtual-metrology outputs for enhancing prediction accuracy’, IEEE Transactions on Automation Science and Engineering 8(2), 311–318.
Xie, J., Yang, D. & Zhao, J. (2018), ‘Multiple model adaptive control for switched linear systems: A two-layer switching strategy’, International Journal of Robust and Nonlinear Control 28(6), 2276–2297.
Xiong, H. H. & Zhou, M. (1998), ‘Scheduling of semiconductor test facility via Petri nets and hybrid heuristic search’, IEEE Transactions on Semiconductor Manufacturing 11(3), 384–393.
Xue, M., Yan, G., Li, J. & Xu, Z. (2012), ‘Electrostatic separation for recycling conductors, semiconductors, and nonconductors from electronic waste’, Environmental science & technology 46(19), 10556–10563.
Yang, C., Shen, W. & Wang, X. (2016), Applications of Internet of Things in manufacturing, in ‘Computer Supported Cooperative Work in Design, IEEE International Conference on’, IEEE, pp. 670–675.
Yang, T., Su, C.-T. & Hsu, Y.-R. (2000), ‘Systematic layout planning: a study on semiconductor wafer fabrication facilities’, International Journal of Operations & Production Management 20(11), 1359–1371.
Yin, Z. & Hou, J. (2016), ‘Recent advances on SVM based fault diagnosis and process monitoring in complicated industrial processes’, Neurocomputing 174, 643–650.
Yuan, X., Wang, Y. & Wu, L. (2008), ‘Composite feedforward-feedback controller for generator excitation system’, Nonlinear Dynamics 54(4), 355–364.
Yun, J.-h. (2001), ‘Integrated management of semiconductor process data’. US Patent 6,240,331.
Zhang, H., Wang, H., Li, J. & Gao, H. (2018), ‘A generic data analytics system for manufacturing production’, Big Data Mining and Analytics 1(2), 160–171.
Zhang, W., Branicky, M. S. & Phillips, S. M. (2001), ‘Stability of networked control systems’, IEEE Control Systems 21(1), 84–99.
Zheng, Y., Wong, D. S.-H., Wang, Y.-W. & Fang, H. (2014), ‘Takagi–sugeno model based analysis of EWMA RtR control of batch processes with stochastic metrology delay and mixed products’, IEEE transactions on cybernetics 44(7), 1155–1168.
Zhong, R. Y., Xu, X., Klotz, E. & Newman, S. T. (2017), ‘Intelligent manufacturing in the context of industry 4.0: A review’, Engineering 3(5), 616–630.
Zhou, K., Liu, T. & Zhou, L. (2015), Industry 4.0: Towards future industrial opportunities and challenges, in ‘Fuzzy Systems and Knowledge Discovery, International Conference on’, IEEE, pp. 2147–2152.
Zimmermann, H.-J. (1996), Fuzzy control, in ‘Fuzzy Set Theory-and Its Applications’, Springer, pp. 203–240.