簡易檢索 / 詳目顯示

研究生: 王冠婷
Wang, Kuan-Ting
論文名稱: 以平行可調變光纖延遲線模擬彈性延遲
Approximation of Flexible Delay Lines by Parallel Variable Optical Delay Lines
指導教授: 李端興
Lee, Duan-Shin
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 15
中文關鍵詞: 光纖緩衝器彈性延遲線可調變光纖延遲線最壞實例平均實例
外文關鍵詞: optical buffer, flexible delay line, variable optical delay line, worst case, average case
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文裡我們提出使用平行運作的可調變光纖延遲線來模擬最大延遲d的彈性延遲線。我們證明,若要利用平行運作的可調變光纖延遲線來完美的模擬彈性延遲,只需要floor((2d+1)/3)條可調變光纖延遲線。我們也證明,當延遲d很大時,模擬彈性延遲平均使用到的忙碌的可調變光纖延遲線大約需要(1-2e^(-1))d條。


    In this paper we propose to construct a flexible delay line with maximum delay d by parallel variable optical delay lines. We show that to exactly emulate a flexible delay line, one needs floor((2d+1)/3) variable optical delay lines. We also show that the average number of busy variable optical delay lines to approximate a flexible delay line is roughly (1-2e^(-1))d for large d.

    I. Introduction 1 II. Exact Emulation 4 III.Admission Probability 5 IV. Expected Number of Busy VODL’s 7 V. Simulation Results 8 VI. Conclusions 10 VII.References 14

    [1] I. Chlamtac, A. Fumagalli, L. G. Kazovsky, P. Melman, W. H. Nelson, P. Poggiolini, M. Cerisola, A. N. M. M. Choudhury, T. K. Fong, R. T. Hofmeister, C. L. Lu, A. Mekkittikul, D. J. M. Sabido IX, C. J. Suh and E. W. M. Wong, “Cord: contention resolution by delay lines,” IEEE Journal on Selected Areas in Communications, vol. 14, pp. 1014–1029, 1996.
    [2] C. J. Chang-Hasnain, P.C. Ku, J. Kim, and S.L. Chuang, ”Variable optical buffer using slow light in semiconductor nanostructures.” Proceedings OF The IEEE, vol. 91, pp. 1884-1897, Nov. 2003.
    [3] R. L. Cruz and J.-T. Tsai, “COD: alternative architectures for high speed packet switching,” IEEE/ACM Transactions on Networking, vol. 4, pp. 11–21, February 1996.
    [4] D. K. Hunter, D. Cotter, R. B. Ahmad, D. Cornwell, T. H. Gilfedder, P. J. Legg, and I. Andonovic, “2 × 2 buffered switch fabrics for traf.c routing, merging and shaping in photonic cell networks,” IEEE Journal of Lightwave Technology, vol. 15, pp. 86–101, January 1997.
    [5] D. K. Hunter, W. D. Cornwell, T. H. Gilfedder, A. Franzen, and I. Andonovic, “SLOB: a switch with large optical buffers for packet switching,” IEEE Journal of Lightwave Technology, vol. 16, pp. 1725–1736, October 1998.
    [6] C.-S. Chang, Y.-T. Chen, Duan-Shin Lee, Jay Cheng, “Multistage Constructions of Linear Compressors, Non-overtaking Delay Lines, and Flexible Delay Lines,” IEEE Infocom 2006, Barcelona, Spain.
    [7] C.-C. Chou, C.-S. Chang, D.-S. Lee, J. Cheng, “A Necessary and Suf.cient Condition for the Construction of 2-to-1 Optical FIFO Multiplexers by a Single Crossbar Switch and Fiber Delay Lines,” IEEE Transactions on Information Theory, Vol. 52, No. 10, pp. 4519–4531, October 2006.
    [8] Po-Kai Huang, C.-S. Chang, Jay Cheng, D.-S. Lee, ”Recursive Constructions of Parallel FIFO and LIFO Queues with Switched Delay Lines,” IEEE Trans. on Information Theory, Vol. 53, No. 5, p. 1778-1798, May 2007.
    [9] P. C. Ku, C .J. Chang-Hasnain, and S. L. Chuang, “Variable semiconductor all-optical buffers,” Electron. Lett., vol. 38, pp.1581-1583, Nov. 2002.
    [10] Duan-Shin Lee, Kai-Jie Hsu, Cheng-Shang Chang, Jay Cheng, “Emulation and Approximation of a Flexible Delay Line by Parallel Non-overtaking Delay Lines”, IEEE Infocom 2009.
    [11] S.-Y. R. Li, “Algebraic Switching Theory and Broadband Applications,” Academic Press, 2001.
    [12] J.P. Marangos, ”Electromagnetically induced transparency,” J. Modern Opt., 1998, 45, pp. 471-503.
    [13] R. S. Tucker, P. C. Ju and C. J. Chang-Hasnain, ”Slow-light optical buffers: capabilities and fundamental limitations,” J. Lightw. Technol., vol. 23, no. 12, pp. 4046-4066, Dec. 2005.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE