研究生: |
張祐誠 Chang, Yu Cheng |
---|---|
論文名稱: |
製備奈米級複合性高分子雙藥搭載系統於光動力─化學治療之應用 Fabrication of chitosan-based nanoparticles as a dual-functional drug carrier in combinational chemo-photodynamic therapy |
指導教授: |
黃郁棻
Huang, Yu Fen |
口試委員: |
張建文
姜文軒 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 70 |
中文關鍵詞: | 高分子藥物載體 、光動力治療 、結合性治療 |
外文關鍵詞: | nanocarriers, photodynamic therapy, combinational therapy |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
同時載附雙藥物的奈米級載體在癌症治療領域中為一個較近期的治療方案,由於不同藥物間本身相異的作用機制,在進行治療時期望能夠同時發揮各自的毒理機制,進而達到加成性甚至具有增效作用的效果。本研究主要著重於光動力結合化學性治療。光敏劑選擇玫瑰紅 (Rose Bengal) ,其具有良好的光敏化效率,本身因具有帶負電性的官能基,能夠和帶正電的高分子有著良好的靜電作用力;另一方面,紫杉醇 (Paclitaxel) 做為傳統的化學治療藥物的方案。本研究主要利用甲殼素 (Chitosan) 、聚乙烯醇 (Polyvinyl alcohol)、混合短鏈聚乙烯亞胺 (Polyethylenimine) 等高分子,利用油水乳化法將疏水性的紫杉醇及親水性的玫瑰紅同時包覆,聚乙烯亞胺之陽離子聚電解質特性,可藉由靜電吸引力,進一步提升於中性環境下對於玫瑰紅的裝載效率。搭配牛血清白蛋白本身具有聚兩性電解質的特性,於載體中做為非共價型交聯劑,可以使載體成分間原本藉由靜電作用力所牽引的特性獲得更進一步的提升,使整體結構更為緻密。最後利用電性相異的特性使透明質酸 (Hyaluronic acid)在高分子載體上進行表面吸附的動作,除了有效降低載體原本過高的表面正電性外,更可以做為標靶治療的潛力。最後利用雷射光激發,誘導載體內雙藥物同時引發光動力以及化學藥物的毒性產生,治療效果勝於裝載單一藥物之外,同時在未照光時,能確保能有效包覆藥物以降低藥物本身毒性造成健康細胞的影響。
綜合上述,本研究提出簡單而快速的方式,無須經過化學性修飾或高分子聚合等複雜的製程,只利用數種高分子及藥物的參雜,即能有效的利用靜電作用力達成裝載藥物的目的。透過一系列的細胞實驗測試,首先證實載體具標靶的潛力,相對於大部分載體利用被動標靶的傳遞方式,能夠更有效的利用細胞表面受體的胞吞途徑達到進一步的藥物累積;另外細胞毒性及自由基效率測試,除了呈現出雙藥物結合下的治療優勢外,相對於傳統的光動力治療,提供了一個顯著改善的方案。
Dual functional drug carrier has been a modern strategy in cancer therapy, because it is a platform to evaluate synergistic effect through combination therapy. In the present study, we combined properties of two drugs Paclitaxel (PTX) and Rose Bengal (RB) as a synergistic treatment of chemo-photodynamic therapy . In order to encapsulate these hydrophobic and hydrophilic drugs in one functional system, we fabricate polymeric nanocarriers (NCs) using tripolymer mixtures of chitosan (CTS), branched polyethylenimine (bPEI) and polyvinyl alcohol (PVA) through an oil-in-water emulsion method. The polycationic properties of CTS and bPEI permit effective entrapment of RB molecules. During assembly process, bovine serum albumin (BSA) was also added to condense cationic tripolymer mixtures into stable nanocarriers (BNCs). Eventually, hyaluronic acid (HA) was used as an ionic cross-linking agent through electrostatic interaction to lower down carrier’s zeta potential for suitable application in biological systems. Our results suggest an effective drug loading and high dispersion stability of HBNCs in different buffer solutions. Low leakage of drug molecules from the engineered HBNCs were also confirmed on the basis of dialysis experiments. Moreover, fluorescence microscopic images displayed a high intracellular uptake and localization of drug-loaded HBNCs toward Tramp-C1 cells. The photodynamic effect showed intracellular RB release after photo irradiation; its ROS generation was further evaluated by flow cytometry and alamar blue cytotoxicity assays. Together, our dual-drug carrier system assures enhanced cytotoxicity in cancer cells compared with single-loading drug alone. A dual-functional delivery platform was successfully established to improve the therapeutic efficacy in tumor cells.
1. Siegel, R.L., K.D. Miller, and A. Jemal, Cancer Statistics, 2015. Ca-a Cancer Journal for Clinicians, 2015. 65(1): p. 5-29.
2. Xiang, D.X., et al., Nucleic Acid Aptamer-Guided Cancer Therapeutics and Diagnostics: the Next Generation of Cancer Medicine. Theranostics, 2015. 5(1): p. 23-42.
3. Maeda, H., et al., Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. Journal of Controlled Release, 2000. 65(1-2): p. 271-284.
4. Gorman, A., et al., In vitro demonstration of the heavy-atom effect for photodynamic therapy. Journal of the American Chemical Society, 2004. 126(34): p. 10619-10631.
5. Dolmans, D.E.J.G.J., D. Fukumura, and R.K. Jain, Photodynamic therapy for cancer. Nature Reviews Cancer, 2003. 3(5): p. 380-387.
6. Pizova, K., et al., Photodynamic therapy for enhancing antitumour immunity. Biomedical Papers-Olomouc, 2012. 156(2): p. 93-102.
7. Chatterjee, D.K., L.S. Fong, and Y. Zhang, Nanoparticles in photodynamic therapy: An emerging paradigm. Advanced Drug Delivery Reviews, 2008. 60(15): p. 1627-1637.
8. James, N.S., et al., Comparative Tumor Imaging and PDT Efficacy of HPPH Conjugated in the Mono- and Di-Forms to Various Polymethine Cyanine Dyes: Part-2. Theranostics, 2013. 3(9): p. 703-718.
9. Adair, J.H., et al., Nanoparticulate Alternatives for Drug Delivery. Acs Nano, 2010. 4(9): p. 4967-4970.
10. Allen, T.M. and P.R. Cullis, Drug delivery systems: Entering the mainstream. Science, 2004. 303(5665): p. 1818-1822.
11. Mnyusiwalla, A., A.S. Daar, and P.A. Singer, 'Mind the gap': science and ethics in nanotechnology. Nanotechnology, 2003. 14(3): p. R9-R13.
12. Eustis, S. and M.A. El-Sayed, Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chemical Society Reviews, 2006. 35(3): p. 209-217.
13. Haes, A.J. and R.P. Van Duyne, A nanoscale optical blosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. Journal of the American Chemical Society, 2002. 124(35): p. 10596-10604.
14. Nylander, C., B. Liedberg, and T. Lind, Gas-Detection by Means of Surface-Plasmon Resonance. Sensors and Actuators, 1982. 3(1): p. 79-88.
15. Liedberg, B., C. Nylander, and I. Lundstrom, Surface-Plasmon Resonance for Gas-Detection and Biosensing. Sensors and Actuators, 1983. 4(2): p. 299-304.
16. Laurent, S., et al., Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chemical Reviews, 2008. 108(6): p. 2064-2110.
17. Mahmoudi, M., et al., Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Advanced Drug Delivery Reviews, 2011. 63(1-2): p. 24-46.
18. Gupta, A.K. and M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005. 26(18): p. 3995-4021.
19. Nozik, A.J., et al., Semiconductor Quantum Dots and Quantum Dot Arrays and Applications of Multiple Exciton Generation to Third-Generation Photovoltaic Solar Cells. Chemical Reviews, 2010. 110(11): p. 6873-6890.
20. Baughman, R.H., A.A. Zakhidov, and W.A. de Heer, Carbon nanotubes - the route toward applications. Science, 2002. 297(5582): p. 787-792.
21. Zhu, Y.W., et al., Graphene and Graphene Oxide: Synthesis, Properties, and Applications (vol 22, pg 3906, 2010). Advanced Materials, 2010. 22(46): p. 5226-5226.
22. Hule, R.A. and D.J. Pochan, Polymer nanocomposites for biomedical applications. Mrs Bulletin, 2007. 32(4): p. 354-358.
23. Shi, J.J., et al., Nanotechnology in Drug Delivery and Tissue Engineering: From Discovery to Applications. Nano Letters, 2010. 10(9): p. 3223-3230.
24. Kintzel, P.E. and R.T. Dorr, Anticancer Drug Renal Toxicity and Elimination - Dosing Guidelines for Altered Renal-Function. Cancer Treatment Reviews, 1995. 21(1): p. 33-64.
25. Jaracz, S., et al., Recent advances in tumor-targeting anticancer drug conjugates. Bioorganic & Medicinal Chemistry, 2005. 13(17): p. 5043-5054.
26. Schimmel, K.J.M., et al., Cardiotoxicity of cytotoxic drugs. Cancer Treatment Reviews, 2004. 30(2): p. 181-191.
27. Gabizon, A., et al., Prolonged Circulation Time and Enhanced Accumulation in Malignant Exudates of Doxorubicin Encapsulated in Polyethylene-Glycol Coated Liposomes. Cancer Research, 1994. 54(4): p. 987-992.
28. Barenholz, Y., Doxil (R) - The first FDA-approved nano-drug: Lessons learned. Journal of Controlled Release, 2012. 160(2): p. 117-134.
29. Hawkins, M.J., P. Soon-Shiong, and N. Desai, Protein nanoparticles as drug carriers in clinical medicine. Advanced Drug Delivery Reviews, 2008. 60(8): p. 876-885.
30. Szebeni, J., F.M. Muggia, and C.R. Alving, Complement activation by cremophor EL as a possible contributor to hypersensitivity to paclitaxel: an in vitro study. Journal of the National Cancer Institute, 1998. 90(4): p. 300-306.
31. Peer, D., et al., Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2007. 2(12): p. 751-760.
32. Lim, C.K., et al., Nanophotosensitizers toward advanced photodynamic therapy of Cancer. Cancer Letters, 2013. 334(2): p. 176-187.
33. Mathews, M.S., et al., Photochemical internalization of bleomycin for glioma treatment. Journal of Biomedical Optics, 2012. 17(5).
34. Selbo, P.K., et al., Photochemical internalization provides time- and space-controlled endolysosomal escape of therapeutic molecules. Journal of Controlled Release, 2010. 148(1): p. 2-12.
35. Mayor, S. and R.E. Pagano, Pathways of clathrin-independent endocytosis. Nature Reviews Molecular Cell Biology, 2007. 8(8): p. 603-612.
36. Adams, G.P. and L.M. Weiner, Monoclonal antibody therapy of cancer. Nature Biotechnology, 2005. 23(9): p. 1147-1157.
37. Ellerby, H.M., et al., Anti-cancer activity of targeted pro-apoptotic peptides. Nature Medicine, 1999. 5(9): p. 1032-1038.
38. Sun, C., R. Sze, and M.Q. Zhang, Folic acid-PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI. Journal of Biomedical Materials Research Part A, 2006. 78A(3): p. 550-557.
39. Luo, Y., M.R. Ziebell, and G.D. Prestwich, A hyaluronic acid-taxol antitumor bioconjugate targeted to cancer cells. Biomacromolecules, 2000. 1(2): p. 208-218.
40. Lage, H., An overview of cancer multidrug resistance: a still unsolved problem. Cellular and Molecular Life Sciences, 2008. 65(20): p. 3145-3167.
41. Gottesman, M.M., T. Fojo, and S.E. Bates, Multidrug resistance in cancer: Role of ATP-dependent transporters. Nature Reviews Cancer, 2002. 2(1): p. 48-58.
42. Leonard, G.D., T. Fojo, and S.E. Bates, The role of ABC transporters in clinical practice. Oncologist, 2003. 8(5): p. 411-424.
43. Cordoncardo, C., et al., Multidrug-Resistance Gene (P-Glycoprotein) Is Expressed by Endothelial-Cells at Blood-Brain Barrier Sites. Proceedings of the National Academy of Sciences of the United States of America, 1989. 86(2): p. 695-698.
44. Hubensack, M., et al., Effect of the ABCB1 modulators elacridar and tariquidar on the distribution of paclitaxel in nude mice. Journal of Cancer Research and Clinical Oncology, 2008. 134(5): p. 597-607.
45. Parhi, P., C. Mohanty, and S.K. Sahoo, Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy. Drug Discovery Today, 2012. 17(17-18): p. 1044-1052.
46. Pauwels, B., et al., Combined modality therapy of gemcitabine and radiation. Oncologist, 2005. 10(1): p. 34-51.
47. Conte, C., et al., Biodegradable core-shell nanoassemblies for the delivery of docetaxel and Zn(II)-phthalocyanine inspired by combination therapy for cancer. Journal of Controlled Release, 2013. 167(1): p. 40-52.
48. Greco, F. and M.J. Vicent, Combination therapy: Opportunities and challenges for polymer-drug conjugates as anticancer nanomedicines. Advanced Drug Delivery Reviews, 2009. 61(13): p. 1203-1213.
49. Shieh, M.J., et al., Reversal of doxorubicin-resistance by multifunctional nanoparticles in MCF-7/ADR cells. Journal of Controlled Release, 2011. 152(3): p. 418-425.
50. Khdair, A., et al., Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance in vitro. European Journal of Pharmaceutics and Biopharmaceutics, 2009. 71(2): p. 214-222.
51. Duncan, R., Polymer conjugates as anticancer nanomedicines. Nature Reviews Cancer, 2006. 6(9): p. 688-701.
52. Ringsdorf, H., Structure and Properties of Pharmacologically Active Polymers. Journal of Polymer Science Part C-Polymer Symposium, 1975(51): p. 135-153.
53. Couvreur, P., et al., Tissue Distribution of Anti-Tumor Drugs Associated with Polyalkylcyanoacrylate Nanoparticles. Journal of Pharmaceutical Sciences, 1980. 69(2): p. 199-202.
54. Couvreur, P., et al., Adsorption of Anti-Neoplastic Drugs to Polyalkylcyanoacrylate Nanoparticles and Their Release in Calf Serum. Journal of Pharmaceutical Sciences, 1979. 68(12): p. 1521-1524.
55. Romberg, B., W.E. Hennink, and G. Storm, Sheddable coatings for long-circulating nanoparticles. Pharmaceutical Research, 2008. 25(1): p. 55-71.
56. Gabizon, A. and F. Martin, Polyethylene glycol coated (pegylated) liposomal doxorubicin - Rationale for use in solid tumours. Drugs, 1997. 54: p. 15-21.
57. Harris, J.M. and R.B. Chess, Effect of pegylation on pharmaceuticals. Nature Reviews Drug Discovery, 2003. 2(3): p. 214-221.
58. Veiseh, O., J.W. Gunn, and M.Q. Zhang, Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Advanced Drug Delivery Reviews, 2010. 62(3): p. 284-304.
59. Yu, M.K., et al., Image-Guided Prostate Cancer Therapy Using Aptamer-Functionalized Thermally Cross-Linked Superparamagnetic Iron Oxide Nanoparticles. Small, 2011. 7(15): p. 2241-2249.
60. Quintanar-Guerrero, D., et al., Preparation techniques and mechanisms of formation of biodegradable nanoparticles from preformed polymers. Drug Development and Industrial Pharmacy, 1998. 24(12): p. 1113-1128.
61. Nafee, N., et al., Relevance of the colloidal stability of chitosan/PLGA nanoparticles on their cytotoxicity profile. International Journal of Pharmaceutics, 2009. 381(2): p. 130-139.
62. Li, Y.P., et al., PEGylated PLGA nanoparticles as protein carriers: synthesis, preparation and biodistribution in rats. Journal of Controlled Release, 2001. 71(2): p. 203-211.
63. Amoozgar, Z., et al., Low Molecular-Weight Chitosan as a pH-Sensitive Stealth Coating for Tumor-Specific Drug Delivery. Molecular Pharmaceutics, 2012. 9(5): p. 1262-1270.
64. Khoee, S. and M. Yaghoobian, An investigation into the role of surfactants in controlling particle size of polymeric nanocapsules containing penicillin-G in double emulsion. European Journal of Medicinal Chemistry, 2009. 44(6): p. 2392-2399.
65. Chen, D.Y., H.S. Peng, and M. Jiang, A novel one-step approach to core-stabilized nanoparticles at high solid contents. Macromolecules, 2003. 36(8): p. 2576-2578.
66. Moinard-Checot, D., et al., Mechanism of nanocapsules formation by the emulsion-diffusion process. Journal of Colloid and Interface Science, 2008. 317(2): p. 458-468.
67. Mora-Huertas, C.E., H. Fessi, and A. Elaissari, Polymer-based nanocapsules for drug delivery. International Journal of Pharmaceutics, 2010. 385(1-2): p. 113-142.
68. Lutter, S., et al., Formation of gold nanoparticles in triblock terpolymer-modified inverse microemulsions. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2008. 329(3): p. 169-176.
69. Rodriguez-Hernandez, J., et al., Toward 'smart' nano-objects by self-assembly of block copolymers in solution. Progress in Polymer Science, 2005. 30(7): p. 691-724.
70. Zheng, C., L.Y. Qiu, and K.J. Zhu, Novel polymersomes based on amphiphilic graft polyphosphazenes and their encapsulation of water-soluble anti-cancer drug. Polymer, 2009. 50(5): p. 1173-1177.
71. Ahmed, F. and D.E. Discher, Self-porating polymersomes of PEG-PLA and PEG-PCL: hydrolysis-triggered controlled release vesicles. Journal of Controlled Release, 2004. 96(1): p. 37-53.
72. Ahmed, F., et al., Biodegradable polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, inducing apoptosis in proportion to accumulated drug. Journal of Controlled Release, 2006. 116(2): p. 150-158.
73. Christian, D.A., et al., Polymersome carriers: From self-assembly to siRNA and protein therapeutics. European Journal of Pharmaceutics and Biopharmaceutics, 2009. 71(3): p. 463-474.
74. Agnihotri, S.A., N.N. Mallikarjuna, and T.M. Aminabhavi, Recent advances on chitosan-based micro- and nanoparticles in drug delivery. Journal of Controlled Release, 2004. 100(1): p. 5-28.
75. Mao, S.R., W. Sun, and T. Kissel, Chitosan-based formulations for delivery of DNA and siRNA. Advanced Drug Delivery Reviews, 2010. 62(1): p. 12-27.
76. Li, J., et al., Human fucosyltransferase 6 enables prostate cancer metastasis to bone. British Journal of Cancer, 2013. 109(12): p. 3014-3022.
77. Haas, H.C., N.W. Schuler, and Macdonal.Rl, Oxidized Polyethylenimine. Journal of Polymer Science Part a-Polymer Chemistry, 1972. 10(11): p. 3143-3158.
78. Davidson, R.S. and K.R. Trethewey, Photosensitized Oxidation of Amines - Mechanism of Oxidation of Triethylamine. Journal of the Chemical Society-Perkin Transactions 2, 1977(2): p. 173-178.
79. Lv, H.T., et al., Toxicity of cationic lipids and cationic polymers in gene delivery. Journal of Controlled Release, 2006. 114(1): p. 100-109.