研究生: |
賴明偉 Ming-Wei Lai |
---|---|
論文名稱: |
氧化鐵奈米線之合成與特性研究 Synthesis and Characterization of Iron Oxide Nanowires |
指導教授: |
周立人
Li-Jen Chou |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
中文關鍵詞: | 氧化鐵 、奈米線 、三氧化二鐵 、四氧化三鐵 |
外文關鍵詞: | iron oxide, nanowires, hematite, magnetite |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本實驗中,我們成功地利用α-Fe2O3粉末合成具有方向性排列的α-Fe2O3奈米線,同時,我們也在矽基板上進行選擇性成長α-Fe2O3的奈米結構。實驗結果發現,材料的成長情形隨基板組成、溫度、氣體流量、以及相對位置而變化。根據TEM及EELS的分析結果,α-Fe2O3奈米線內部存有軸向排列的長週期氧缺陷結構。我們認為此缺陷結構在材料成長時扮演著協助鐵原子進行內部擴散的角色。此外,磁性質方面,由磁滯曲線我們發現到α-Fe2O3奈米線表現出明顯的晶體異向性。場發射現象上,α-Fe2O3奈米線的場發射遵守F-N行為且其β值在低電場時約為560,在高電場時為1500。
接著,我們利用氫、氬混合氣體將α-Fe2O3奈米線還原成為Fe3O4奈米線,還原的機制主要是藉由改變氧離子沿最密堆積方向的堆積順序來達成。實驗中發現Fe3O4不傾向以奈米線的形式存在,在高溫時材料會崩毀變形。我們推測這應該是由於Fe3O4本身的等向性cubic結構所導致。關於材料的磁性質,Fe3O4奈米線表現出了強烈的形狀異向性。
藉由還原α-Fe2O3奈米線的過程中引入Si或Ge,我們成功地合成了氧化物包覆Fe3O4奈米線的一維核-殼結構。其中包覆層的氧化是根源於內層奈米線還原時所釋放出的氧。
最後,經in-situ TEM的分析,驗證了α-Fe2O3在高溫且缺乏氧氛圍的情況下會還原為Fe3O4。同時,也進ㄧ步肯定了Fe3O4奈米線在高溫時不穩定的事實。
In present study, aligned α-Fe2O3 nanowires were synthesized successfully by using of α-Fe2O3 commercial powder. And 1-D α-Fe2O3 nanostructures were also selectively grown on Si wafer. According to experiment results, composition of substrate, temperature, gas flow, and relative position were the factors could cause various morphologies of α-Fe2O3 nanomaterials. TEM and EELS analysis indicated that there were axial long-range ordered oxygen vacancies inside the nanowire. The defects were considered as the channels for internal diffusion of iron atoms during growth. In addition, significant magnetocrystalline anisotropy was obtained by SQUID measurement. The field-emission of α-Fe2O3 nanowires was following F-N behavior with β value of 560 at low electrical field and of 1500 at high electrical field.
Fe3O4 nanowires were synthesized by reduction of α-Fe2O3 nanowires with gas mixed of H2 and Ar. The reduction mechanism was based on modifying the stacking sequence of oxygen ions along the close packed direction. It was found that Fe3O4 nanowires were unstable at higher temperature, which would owing to the isotropic cubic structure of Fe3O4. About the magnetic properties, Fe3O4 nanowires displayed significant shape anisotropy.
Introducing of gaseous Si or Ge during reduction process, the Fe3O4/oxide core-shell nanowires could be synthesized. And the oxidization of shell was due to the release of oxygen from inner nanowire during reduction.
According to the observation from in-situ TEM, reduction of α-Fe2O3 to Fe3O4 at higher temperature in environment without oxygen was evidenced. Furthermore, the result demonstrated that the Fe3O4 naowires was unstable at high temperature.
Chapter 1
[1] Y. N. Xia, P. D. Yang, Y. A. Sun, Y.Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, H. Q. Yan, “One-Dimensional Nanostructures: Synthesis, Characterization, and Applications”, Adv. Mater, 15 353, (2003)
[2] Philip G. Collins, A. Zettl, Hiroshi Bando, Andreas Thess, R. E. Smalley, “Nanotube Nanodevice”, Science 278, 100 (1997)
[3] David H. Cobden, “Nanowires Begin To Shine”, Nature 409, 32 (2001)
[4] Wenjie Liang, Marc Bockrath, Dolores Bozovic, Jason H. Hafner, M. Tinkham, Hongkun Park, “Fabry-Perot interference in a nanotube electron waveguide”, Nature 411, 665 (2001)
[5] Xiangfeng Duan, Yu Huang, Yi Cui, Jianfang Wang, Charles M Lieber, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices”, Nature 409, 66 (2001)
[6] C. N. R. Rao, F. L. Deepak, Gautam Gundiah, A. Govindaraj, “Inorganic Nanowires”, Progress in Solid State Chem. 31, 5 (2003)
[7] Z. R. Dai, Z. W. Pan, Z. L. Wang, “Novel Nanostructure of Functional Oxide Synthesized by Thermal Evaporation”, Adv. Funct. Mater. 13, 9 (2003)
[8] Z. L. Wang (Editor in Chief), “Nanowires and Nanobelts - Materials,
Properties and Devices”, 清華大學出版社,北京 (2004)
[9] Zhaohui Zhong, Deli Wang, Yi Cui, Marc W. Bockrath, Charles M. Lieber, “Nanowire Crossbar Arrays as Address Decoders for Integrated Nanosystems”, Science 302, 1377 (2003)
[10] Robert. F. Service, “Nanodevices Make Fresh Strides Toward Reality”, Science 302, 1310 (2003)
[11] Yu Huang, Charles M. Lieber, “Integrated nanoscale electronics and optoelectronics: Exploring nanoscale science and technology through semiconductor nanowires”, Pure Appl. Chem. 76, 2051 (2004)
[12] Yingjiu Zhang, Nanlin Wang, Shangpeng Gao, Rongrui He, Shu Miao, Jun Liu, Jing Zhu, X. Zhang, “A Simple Method To Synthesize Nanowires”, Chem. Mater. 14, 3564 (2002)
[13] Z. L. Wang, “Characterizing the Structure and Properties of Individual Wire-Like Nanoentities”, Adv. Mater. 12, 1295 (2000)
[14] T. Thurn-Albrecht, J. Schotter, G. A. Kastle, N. Emley, T. Shibauchi, L. Krusin-Elbaum, K. Guarini, C. T. Black, M. T. Tuominen, T. P. Russell, “Ultrahigh-Density Nanowire Arrays Grown in Self-Assembled Diblock Copolymer Templates”, Science 290, 2126 (2000)
[15] Jianfang Wang, Mark S. Gudiksen, Xiangfeng Duan, Yi Cui, Charles M. Lieber, “Highly Polarized Photoluminescence and Photodetection from Single Indium Phosphide Nanowires”, Science 293, 1455 (2001)
[16] Zhibo Zhang, Xiangzhong Sun, M. S. Dresselhaus, Jackie Y. Ying, J. Heremans, “Electronic transport properties of single-crystal bismuth nanowire arrays” Phys. Rev. B 61, 4850 (2000)
[17] Sang-Jae Park, Seungsoo Kim, Suyoun Lee, Zheong G. Khim, Kookrin Char, Teaghwan Hyeon, “Synthesis and Magnetic Studies of Uniform Iron Nanorods and Nanospheres”, J. Am. Chem. Soc. 122, 8581 (2000)
[18] Jun Wang, Qianwang Chen, Chuan Zeng, Binyang Hou, “Magnetic-Field-Induced Growth of Single-Crystalline Fe3O4 Nanowires”, Adv. Mater. 16, 137 (2004)
[19] Shaoguang Yang, Hao Zhu, Dongliang Yu, Zhiqiang Jin, Shaolong Tang, Youwei Du, “Preparation and magnetic property of Fe nanowire array”, Journal of Magnetism and Magnetic Materials 222, 97 (2000)
[20] Daihua Zhang, Zuqin Liu, Song Han, Chao Li, Bo Lei, Michael P. Stewart, James M. Tour, Chongwu Zhou, “Magnetite (Fe3O4) Core-Shell Nanowires: Synthesis and Magnetoresistance”, Nano Lett. 4, 2151 (2004)
[21] R. M. Cornell, U. Schwertmann, ”The Iron Oxides - structure, properties, reactions, occurrences, and uses, 2nd ed.”, Wiley-VCH (2003)
[22] P. J. Spencer, O. Kubaschewski, “A THERMODYNAMIC ASSESSMENT OF THE IRON-OXYGEN SYSTEM”, CALPHAD 2, 147 (1978)
[23] M. Catti, G. Valerio, R. Dovesi, “Theoretical study of electronic, magnetic, and structural properties of α-Fe2O3 (hematite)” Phys. Rev. B 51, 7441 (1995)
[24] O Nagai, N L Bonavito, T Tanaka,” On the Morin phase transition in haematite”, J. Phy. C: Solid State Phys., 6, L470 (1973)
[25] Harolad H. Kung, “Transition Metal Oxides: Surface Chemistry and Catalysis”, Elsevier, New York (1989)
[26] Niclas Beermann, Lionel Vayssierse, Sten-Eric Lindquist, Anders Hagfeldt, “Photoelectrochemical Studies of Oriented Nanorod Thin Films of Hematite”, Journal of The Electrochemical Society, 147, 2456 (2000)
[27] X. Q. Liu, S. W. Tao, Y. S. Shen, “Preparation and characterization of nanocrystalline α-Fe2O3 by a sol-gel process”, Sensors and Actuators B 40, 161 (1997)
[28] O. K. Tan, W. Cao, Y. Hu, W. Zhu, “Nano-structured oxide semiconductor materials for gas-sensing applications”, Ceramics International 30, 1127 (2004)
[29] D. A. Voss, E. P. Butler, T. E. Mitchell, “The Growth of Hematite Blades during the High Temperature Oxidation of Iron”, Meta. Trans. A 13, 929 (1982)
[30] R. L. Tallman, E. A. Gulbransen, “Crystal Morphology and Mechanisms of Growth of Alpha-Fe2O3 Whiskers on Iron”, Electron Diffraction Study of Growths, 155, 770 (1968)
[31] Riitsu Takagi, “Growth of Oxide Whiskers on Metals at High Temperature”, J. Phys. Soc. Jap. 12, 1212 (1957)
[32] E. A. Gulbransen, Thomas P. Copan, ”MICROTOPOLOGY OF THE SURFACE REACTIONS OF OXYGEN AND WATER VAPOUR WITH METALS”, Discussions of the Faraday Society 28, 229 (1959)
[33] E. I. Givargizov, “HIGHLY ANISOTROPIC CRYSTALS, 8th ed.”,
Terra Scientific, Tokyo (1987)
[34] Yunyi Fu, Jing Chen, Han Zhang, “Synthesis of Fe2O3 nanowires by oxidation of iron”, Chem. Phys. Let. 350, 491 (2001)
[35] Y.Y. Fu, R.M. Wang , J. Xu , J. Chen , Y. Yan , A.V. Narlikar , H. Zhang, “Synthesis of large arrays of aligned α-Fe2O3 nanowires”
Chem. Phys. Let. 379, 373 (2003)
[36] X. G. Wen, S. H. Wang, Y. Ding, Z. L. Wang, S. Yang, “Controlled Growth of Large-Area, Uniform, Vertically Aligned Arrays of α-Fe2O3 Nanobelts and Nanowires”, J. Phys. Chem. B, 109, 215, (2005)
[37] Suoyuan Lian, Enbo Wang, Zhenhui Kang, Yunpeng Bai, Lei Gao, Min Jiang, Changwen Hu, Lin Xu, “Synthesis of magnetite nanorods and porous hematite nanorods” Solid State Communications, 129, 485, (2004)
[38] Wei Yu, Liu Hui, “PREPARATION OF NANO-NEEDLE HEMATITE PARTICLES IN SOLUTION”, Materials Research Bulletin, 34, 1227, (1999)
[39] Kyoungja Woo, Ho Jin Lee, “Synthesis and magnetism of hematite and maghemite nanoparticles”, J. Magn. Magn. Mater. 272, e1155, (2004)
[40] Sushin Chikazumi, “Physics of Magnetism”, KRIEGER, Malabar Florida (1964)
[41] U. Hafeli, W. Schutt, J. Teller, M. Zborowski, “Scientific and Clinical Applications of Magnetic Carriers”, Plenum, New York (1997)
[42] 張慶瑞、衛榮漢,「單自旋金屬材料的性質與應用」,物理雙月
刊3, 390 (2003)
[43] Hitoshi Seo, Masso Ogata, Hidetoshi Fukuyama, “Theory of the Verwey transition in Fe3O4”, Physica B 329, 932 (2003)
[44] G. K. H. Madsen, P, Novak, “Charge order in magnetite. An LDA+U study”, Europhys. Lett. 69, 777, (2005)
[45] G. Bate, Wohlfarth, “Ferromagnetic Material”, North-Holland, Amsterdam (1980)
[46] X. Batlle, P. J. Cuadra, Zhongzhi Zhang, S. Cardoso, P. P. Freitas, “Study of the oxygen migration versus anneal in Co/AlOx/Fe–FeOy/Ti tunnel junctions”, J. Magn. Magn. Mater. 261, L305 (2003)
[47] Z. Z. Zhang, S. Cardoso. P. P. Freitas, X. Batlle, P. Wei, N. Barradas, J. C. Soares, “40% tunneling magnetoresistance after anneal at 380°C for tunnel junctions with iron–oxide interface layers”, J. Appl. Phys. 89, 6665 (2001)
[48] Woochul Kim, Kenji Kawaguchi, Naoto Koshizaki, Mitsugu Sohma, Tetsuro Matsumoto, “Fabrication and magnetoresistance of tunnel junctions using half-metallic Fe3O4”, J. Appl. Phys. 93, 8032 (2003)
[49] R. D. McMichael, R. D. Shull, L. J. Swartzendruber, L. H. BennettR. E. Watson, “Magnetocaloric effect in superparamagnets”, J. Magn. Magn. Mater. 111, 29 (1992)
[50] Suoyuan Liana, Zhenhui Kanga, Enbo Wanga , Min Jianga, Changwen Hua, Lin Xu, “Convenient synthesis of single crystalline magnetic Fe3O4 nanorods”, Solid State Communications 127, 605 (2003)
[51] Jun Wang, Zhenmeng Peng, Yujie Huang, Qianwang Chen, “Growth of magnetite nanorods along its easy-magnetization axis of [110]”, Journal of Crystal Growth 263, 616 (2004)
[52] Suoyuan Lian, Enbo Wang, Lei Gao, Zhenhui Kang, Di Wu, Yang Lan, Lin Xu, “Growth of single-crystal magnetite nanowires from Fe3O4 nanoparticles in a surfactant-free hydrothermal process”, Solid State Communications 1(2004)
Chapter 3
[1] B. Million, J. Ruzickova, J. Velisek, J. Vrestal, “Diffusion Processes in the Fe-Ni System”, Mater. Sci. Eng. 50, 43 (1981)
[2] M. Badia, "Interdiffusion in Binary Substitutional Alloys and Impurity
Diffusion in Transition Metals of the Fe Group", Doctor Thesis, Nancy Univ. (1969)
[3] I. N. Frantsevich, D. F. Kalinovich, I.I. Kovenskii, M. D. Smolin, “Electrotransport and Diffusion in Mo-W and Fe-Ni Alloys over Wide Ranges of Temperature”, J. Phys. Chem. Solids 30, 947 (1969)
[4] T. Ustad, H. Sorum, “Interdiffusion in the Fe-Ni, Ni-Co, and Fe-Co Systems”, phys. stat. sol. 20, 286 (1973)
[5] D. A. Voss, E. P. Butler, T. E. Mitchell, “The Growth of Hematite Blades during the High Temperature Oxidation of Iron”, Meta. Trans. A 13, 929 (1982)
[6] E. I. Givargizov, “HIGHLY ANISOTROPIC CRYSTALS, 8th ed.”,
Terra Scientific, Tokyo (1987)
[7] R. J. Borg, D. Y. F. Lai, “Diffusion in a Fe-Si Alloys”, J. Appl. Phys. 41, 5193 (1970)
[8] R. L. Colombo, J. Howard, “Thermal Grooving in Fe-Si (3%)”, J. Mater. Sci. 4, 753 (1969)
[9] D. Treheux, L. Vincent, P. Guiraldenq, “Influence of Si Content on Intergranular Self-Diffusion of Fe-Si Alloys: Correlation with Intergranular Brittleness and Grain Boundary Segregation”, Acta Metall. 29, 931 (1981)
[10] Robert E. Reed-Hill, Reza Abbaschian, “PHYSICAL METALLURGY PRINCIPLES, 3rd ed.”, PWS, Boston (1994)
[11] Milton Ohring, “The Materials Science of Thin Films”, Academic Press, San Diego (1992)
[12] Alfred Grill, “Cold Plasma in Materials Fabrication: From Fundamentals to Applications”, IEEE Press, New York (1993)
[13] Y. N. Xia, P. D. Yang, Y. A. Sun, Y.Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, H. Q. Yan, “One-Dimensional Nanostructures: Synthesis, Characterization, and Applications”, Adv. Mater, 15 353, (2003)
[14] Baoyu Zong, Yihong Wu, Guchang Han, Bingjun Yang, Ping Luo, Li Wang, Jinjun Qiu, Kebin Li, ” Synthesis of Iron Oxide Nanostructures by Annealing Electrodeposited Fe-Based Films”, Chem. Mater. 17, 1515 (2005)
[15] X. G. Wen, S. H. Wang, Y. Ding, Z. L. Wang, S. Yang, “Controlled Growth of Large-Area, Uniform, Vertically Aligned Arrays of α-Fe2O3 Nanobelts and Nanowires”, J. Phys. Chem. B, 109, 215, (2005)
[16] Y.Y. Fu, R.M. Wang , J. Xu , J. Chen , Y. Yan , A.V. Narlikar , H. Zhang, “Synthesis of large arrays of aligned α-Fe2O3 nanowires”
Chem. Phys. Let. 379, 373 (2003)
[17] P. J. Spencer, O. Kubaschewski, “A THERMODYNAMIC ASSESSMENT OF THE IRON-OXYGEN SYSTEM”, CALPHAD 2, 147 (1978)
[18] C. Colliex, Y. Manoubi, C. Ortiz, “Electron-energy-loss- spectroscopy near-edge fine structures in the iron-oxygen system”,
Phys. Rev. B 44, 402, (1991)
[19] C. Mitterbauer, G. Kothleitner, W. Grogger, H. Zandbergen, B. Freitag, P. Tiemeijer, F. Hofer, “ Electron energy-loss near-edge structures of 3d transition metal oxides recorded ar high-energy resolution”, Ultramicroscopy 96, 469 (2003)
[20] F. M. F. de Groot, M. Grioni, J. C. Fuggle, J. Ghijsen, G. A. Sawatzky, H. Petersen, “Oxygen 1s x-ray-absorption edges of transition-metal oxides”, Phys. Rev. B 40 5715, (1989)
[21] S. Sugano, Y. Tanabe, H. Kamimura, “Multiplets of Transition Metal
Ions in Crystals”, Academic, New York (1970)
[22] A. Travlos, N. Boukos, G. Apostolopoulos, A. Dimoulas, C. Giannakopoulos, “EELS study of oxygen superstructure in epitaxial Y2O3 layers”, Mater. Sci. Eng. B 109, 52 (2004)
[23] J. P. Crocombette, M. Pollak, F. Jollet, N. Thromat, M. Gauiter-Soyer, “X-ray-absorption spectroscopy at the Fe L2,3 threshold in iron oxides”, Phys. Rev. B, 52 3143, (1995)
[24] M. T. Otten, B. Miner, J. H. Rask, P. R. Buseck, “The determination of Ti, Mn and Fe oxidation states in minerals by EELS”, Ultramicroscopy, 18 285, (1985)
[25] T. Yamaguchi, S. Shibuya, S. Suga, S. Shin, “Inner-core excitation spectra of transition-metal compounds: II. p-d absorption spectra”, J. Phys. C, 15 2641 (1982)
[26] T. G. Sparrow, B. G. Williams. C. N. Rao, J. M. Thomas, “L3/L2 white-line intensity ratios in the electron energy-loss spectra of 3d transition-metal oxides”, Chem. Phys. Lett., 108 547, (1984)
[27] David R. Gaskell, Introduction to Thermodynamics of Materials, 3rd ed.”, TAYLOR&FRANCIS, Philadelphia (1995)
[28] R. M. Cornell, U. Schwertmann, ”The Iron Oxides - structure, properties, reactions, occurrences, and uses, 2nd ed.”, Wiley-VCH (2003)
[29] Y. L. Chueh, L. J. Chou, S. L. Cheng, J. H. He, W. W. Wu, L. J.Chen, “Synthesis of taperlike Si nanowires with strong field emission”, Appl. Phys. Lett. 86, 133112, (2005)
[30] Enrique R. Batista, Richard A. Friesner, “A Self-Consistent Charge-Embedding Methodology for ab Initio Quantum Chemical Cluster Modeling of Ionic Solids and Surfaces: Application to the (001) Surface of Hematite (α-Fe2O3)”, J. Phys. Chem. B 106, 8136 (2002)
[31] Hsin Yu Lin, Yu Wen Chen, Chiuping Li, “The mechanism of reduction of iron oxide by hydrogen”, Thermochimica Acta 400, 61 (2003)
[32] Sushin Chikazumi, “Physics of Magnetism”, KRIEGER, Malabar Florida (1964)
[33] R. W. De Blois, C. D. Graham “Domain Observations on Iron Whiskers”, J. Appl. Phys. 29, 459 (1958)
[34] 張家旗、張怡甄、陳哲勤、洪連輝、吳仲卿,「磁性奈米鑄型結構」,物理雙月刊26, 571 (2004)
[35] Yiying Wu, Peidong Yang,” Direct Observation of Vapor-Liquid- Solid Nanowire Growth”, J. Am. Chem. Soc. 123, 3165 (2001)
[36] Z. L. Wang, P. Poncharal, W. A. de Heer, “Nanomeasurments of Individual Carbon Nanotubes By In-Situ TEM”, Pure Appl. Chem., 72, 209, (2000)