研究生: |
張睦東 Chang,Mu-Tung |
---|---|
論文名稱: |
一維氧化鎢、氧化鐵及矽化鉻奈米線合成、結構鑑定及應用研究 One-Dimensional Tungsten Oxide, Iron Oxide and Chromium Silicide Nano-structures: Synthesis, Characterizations and Applications |
指導教授: |
周立人
Chou,Li-Jen |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2008 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 167 |
中文關鍵詞: | 氧化鎢 、氧化鐵 、矽化鉻 、奈米線 |
外文關鍵詞: | Tungsten Oxide, Iron Oxide, Chromium Silicide, Nanowire |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Abstract
The theme of this thesis focuses on the fabrication, characterization and application of the one-dimensional transition metal (tungsten, iron) oxides nanowires (NWs) and chromium silicide nano-pillars. It includes the following subjects︰
In the first part, We discussed the methods to fabricate the 1-D tungsten oxide NWs, which exhibiting distinctive electrochromic, gaschromic properties. In this study, we demonstrate an innovative way of fabricating the tungsten oxide NWs on silicon substrate. An emission peak at 470 nm was found by photoluminescence measurement (PL) at room temperature. The excellent field-emission property was observed, which indicated the tungsten oxide NW is the ideal candidate for the nano-emitter due to the crystalline structure and the high aspect ratio. Based on the device characterization, the nitrogen-doped WO3 NWs is an outstanding candidate for the nano-FET devices with considerably low resistivity.
Second, we present the fabrication of self-aligned α-Fe2O3 NWs arrays and magnetite NWs produced via the tip-growth mechanism. Magnetic property in the magnetite (Fe3O4) NWs was investigated by means of the electron holography, which interpret the magnetic information from the phase shift of hologram. Magnetic flux is parallelling to the longitudinal axis of the NWs. The observations of magnetized flux distribution revealed the possibility of regulating the spin current with the half-metallic NWs due to the controlled magnetization distribution in the one-dimensional form.
In the final part, the core-shell chromium silicide nanostructures were fabricated inside the silicon nano-pillars grown by the vapour–liquid–solid mechanism. A remarkable field-emission behavior illustrates extensive improvement of the carrier transport due to the reduced energy barrier between the metal and semiconductor. The results warrant the potential applications for chromium silicide as the contact material for the future nano-systems.
摘要
本論文主要研究一維過鍍金屬(鎢和鐵)氧化物及矽化鉻奈米線之合成鑑定與應用,利用奈米線本身的高表面積比及高深寬比所產生的獨特光性、電性及磁性質,探討當兩個維度為奈米尺寸結構下所延伸的奈米科學,最後研究其元件特性,探討其未來在產業應用上的優勢。
論文的第一部份主要探討氧化鎢(WO3)奈米線的形成機制及控制生長參數,並能藉由氨氣裂解製程,使氮參雜於奈米線中,發現氮參雜之奈米線具有優良的場發射性質及室溫下光致發光(PL)的特性,可將其製作成具有低阻值之奈米電子元件,並能成功將氧化鎢奈米線成長於四吋的矽基板上,這有助於結合既存的矽基工業和氧化鎢奈米線,實為一項新的突破技術。
再者,著重於氧化鐵(Fe2O3及Fe3O4)奈米線之奈米微結構分析;奈米尺度下磁訊號之分析,包括以高解析量子干涉儀(Superconducting Quantum Interference Device, SQUID)及電子全像術(ELECTRON HOLOGRAPHY),探討其應用於未來奈米自旋電子元件及奈米磁記錄材料之可能性。
論文的最後討論殼盒狀鉻矽化物-矽奈米柱之複合結構,以金屬矽化物本身的高熔點、熱穩定性佳及低電阻之優良特性,將其和矽奈米線相結合,降低矽奈米線與元件電極間的接觸電阻,以利於未來使矽奈米線成為現今矽電子工業之主流。
References
Chapter 1
1.1. A. P. Alivisatos, “Semiconductor Clusters, Nanocrystals, and Quantum Dots,” Science, 271, (1996), pp 933-937.
1.2. C. B. Murray, C. R. Kagan, and M. G. Bawendi, “Synthesis and Characterization of Monodisperse Nanocrystals and Close-packed Nanocrystal Assemblies,” Annu. Rev. Mater. Sci., 30, (2000), pp 545-610.
1.3. J. M. Krans, J. M. van Rutenbeek, V. V. Fisun, I. K. Yanson, and L. J. deJongh, “The Signature of Conductance Quantization in Metallic Point Contacts,” Nature, 375, (1995), pp 767-769.
1.4. K. K. Likharev, and T. Claeson, “Single Electronics,” Sci. Am., 266, (1992), pp 80-85.
1.5. G. Markovich, G. P. Collier, S. E. Henrichs, F. Remacle, R. D. Levine, and J. R. Heath, “Architectonic Quantum Dot Solids,” Acc. Chem. Res., 32, (1999), pp 415-423.
1.6. J. H. Choy, E. S. Jang, J. H. Won, J. H. Chung, D. J. Jang, and Y. W. Kim, “Soft Solution Route to Directionally Grown ZnO Nanorod Arrays on Si Wafer; Room-Temperature Ultraviolet Laser,” Adv. Mater., 15, (2003), pp 1911–1914.
1.7. Y. L. Chueh, M. T. Ko, L. J. Chou, L. J. Chen, C. S. Wu, and C. D. Chen, “TaSi2 Nanowires: A Potential Field Emitter and Interconnect,” Nano Lett., 6, (2006), pp 1637-1644.
1.8. J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H. J. Choi, and P. Yang, “Single-crystal Gallium Nitride Nanotubes,” Nature, 422, (2003), pp 599-602.
1.9. W. Wang, B. Zeng, J. Yang, B. Poudel, J. Huang, M. J. Naughton, and Z. Ren, “Aligned Ultralong ZnO Nanobelts and Their Enhanced Field Emission,” Adv. Mater., 18, (2006), pp 3275–3278.
1.10. P. Yang, Y. Wu, and R. Fan, “Inorganic Semiconductor Nanowires,” Inter. J. Nano, 1, (2002), pp 1-39.
1.11. Y. Wu, H. Yan, M. Huang, B. Messer, J. H. Songand, and P. Yang, “Inorganic Semiconductor Nanowires: Rational Growth, Assembly, and Novel Properties,” J. Chemistry, Euro., 8, (2002), pp 1260-1268.
1.12. T. Shimizu, T. Xie, J. Nishikawa, S. Shingubara, S. Senz, and Ulrich Gösele, “Synthesis of Vertical High-Density Epitaxial Si(100) Nanowire Arrays on a Si(100) Substrate Using an Anodic Aluminum Oxide Template,” Adv. Mater., 19, (2007), pp 917–920
1.13. J. H. Paek, T. Nishiwaki, M. Yamaguchi, and N. Sawaki, “MBE-VLS Growth of GaAs nanowires on (111) Si Substrate,” phys. stat. sol. (c), 5, (2008), pp 2740–2742.
1.14. S. A. Dayeh, D. P. R. Aplin, X. Zhou, P. K. L. Yu, E. T. Yu, and D. Wang “High Electron Mobility InAs Nanowire Field-Effect Transistors,” Small, 3, (2007), pp 326 – 332.
1.15. P. D. Yang, and C. M. Lieber, “Nanostructured high-temperature superconductors:Creation of Strong-pinning Columnar Defects in Nanorod/superconductor Composites,” J. Mater. Res., 12, (1997), pp 2981-2996.
1.16. B. D. Bao, Y. F. Chen, and N. Wang, “Formation of ZnO Nanostructures by a Simple Way of Thermal Evaporation,” Appl. Phys. Lett., 81, (2002), pp 757-759.
1.17. M. H. Huang, S. Mao, H. Feich, H.Yan, Y. Wu, H. Kind, E. Weber, R. Russo, and P. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers,” Science, 292, (2001), pp 1897-1899.
1.18. Z. R. Dai, J. L. Gole, J. D. Stout, and Z. L. Wang, “Tin oxide Nanowires, Nanoribbons, and Nanotubes,” J. Phys. Chem. B, 106, (2002), pp 1274-1279.
1.19. X. S. Peng, Y. W. Wang, J. Zhang, X. F. Wang, L. X. Zhao, G. W. Meng, and L. D. Zhang, “Large-scale Synthesis of In2O3 Nanowires,” App. Phys. A, 74, (2002), pp 437-439.
1.20. Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, Y. H. Lee, G. S. Park, W. B. Choi, N. S. Lee, and J. M. Kee, “Catalytic Growth of -Ga2O3 Nanowires by Arc Discharge,” Adv. Mater., 12, (2000), pp 746-750.
1.21. Y. W. Wang , C. H. Liang , G. Z. Wang , T. Gao , S. X. Wang , J. C. Fan, and L. D. Zhang , “Preparation and Characterization of Ordered Semiconductor CdO Nanowire Arrays,” J. Mater. Sci. Lett., 20, (2001), pp 1687-1689.
1.22. Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Lead Oxide Nanobelts and Phase Transformation Induced by Electron Beam Irradiation,” Appl. Phys. Lett., 80, (2002), pp 309-311.
1.23. Z. R. Dai, Z. W. Pan, and Z. L. Wang, “Novel Nanostructures of Functional Oxides Synthesized by Thermal Evaporation,” Adv. Func. Mater., 13, (2003), pp 9-24.
1.24. Y. Qin, X. D. Wang, and Z. L. Wang, “Microfibre–nanowire Hybrid Structure for Energy Scavenging,” Nature, 451, (2008), pp 809-813.
1.25. Y. Wu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber, “Single-crystal Metallic Nanowires and Metal/semiconductor Nanowire Heterostructures,” Nature, 430, (2004), pp 61-65.
1.26. Y. L. Chueh, M. T. Ko, L. J. Chou, L. J. Chen, C. S. Wu, and C. D. Chen, “TaSi2 Nanowires: a Potential Field Emitter and Interconnect,” Nano Lett., 6, (2006), pp 1637-1644.
1.27. V. Balzani, A. Credi, and M. Venturi, “The Bottom-Up Approach to Molecular-Level Devices and Machines,” Chem. Eur. J., 8, (2002), pp 5524-5532.
1.28. K. E. Drexler, “Engines of Creation, the Coming Era of Nanotechnology,” Anchor Press, New York, (1986).
1.29. K. E. Drexler, “Machine-Phase Nanotechnology,” Sci. Am., 285, (2001), pp 74-75.
1.30. R. S. Wagner, and W. C. Ellis, “Vapor-Solid-Liquid Mechanism of Single Crystal Growth,” Appl. Phys. Lett., 4, (1964), pp 89-90.
1.31. Y. Wu, and P. Yang, “Direct Observation of Vapor-Liquid-Solid Nanowire Growth,” J. Am. Chem. Soc., 123, (2001), pp 3165-3166.
1.32. Y. Q. Zhu, W. K. Hsu, M. Terrones, N. grobert, H. teerones, J. P. Hare, H. W. Kroto, and D. R. M. Walton, “3D Silicon Oxide Nanostructures: from Nanoflowers to Radiolarian,” J. Mater. Chem., 8, (1998), pp 1859-1864.
1.33. C. H. Hsieh, L. J. Chou, G. R. Lin, Y. Bando, and D. Golberg, “Nano-photonic Switch: Gold-in-Ga2O3 Peapod Nanowires,” Nano Lett., 8, (2008), pp 3081-3085.
1.34. H. F. Yan, Y. J. Xing, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, Z. H. Xi, and S. Q. Feng, “ Growth of Amorphous Silicon Nanowires via a Solid-Liquid-Solid Mechanism,” Chem. Phys. Lett., 323, (2000), pp 224-228.
1.35. D. P. Yu, Y. J. Xing, Q. L. Hang, H. F. Yan, J. Xu, Z. H. Xi, and S. Q. Feng, “Controlled Growth of Oriented Amorphous Silicon Nanowires via a Solid-Liquid-Solid (SLS) Mechanism,” Physica E, 9, (2001), pp 305-309.
1.36. Y. H. Yang, C. X. Wang, B. Wang, N. S. Xu, and G. W. Yang, “ZnO Nanowire and Amorphous Diamond Nanocomposites and Field Emission Enhancement,” Chem. Phys. Lett., 403, (2005) pp 248-251.
1.37. M. C. Johnson, C. J. Lee, E. D. Bourret-Courchesne, S. L. Konsek, S. Aloni, W. Q. Han, and A. Zettl, “Growth and Morphology of 0.80 eV Photoemitting Indium Nitride Nanowires,” Appl. Phys. Lett., 85, (2004), pp 5670-5672.
1.38. K. H. Lee, S. W. Lee, R. R. Vanfleet, and W. Sigmund, “Amorphous Silica Nanowires Grown by the Vapor-Solid Mechanism,” Chem. Phys. Lett., 376, (2003), pp 498-503.
1.39. H. Z. Zhang, Y. C. Kong, Y. Z. Wang, X. Du, Z. G. Bai, J. J. Wang, D. P. Yu, Y. Ding, Q. L. Hang, and S. Q. Feng, “Ga2O3 Nanowires Prepared by Physical Evaporation,” Solid State Comm., 109, (1999), pp 677-682.
1.40. C. Kawai, and A. Yamakawa, “Crystal Growth of Silicon Nitride Whiskers Through a VLS Mechanism Using SiO2-Al2O3-Y2O3 Oxides as Liquid Phase,” Ceram. Int., 24, (1998), pp 135-138.
1.41. W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, “Oxide-assisted Growth and Optical Characterization of Gallium-arsenide Nanowires,” Appl. Phys. Lett., 78, (2001), pp 3304-3306.
1.42. W. S. Shi, H. Y. Peng, N. Wang, C. P. Li, L. Xu, C. S. Lee, R. Kalish, and S. T. Lee, “Free-Standing Single Crystal Silicon Nanoribbons,” J. Am. Chem. Soc., 123, (2001), pp 11095-11096.
Chapter 2
2.1 D. Shindo, and T. Oikawa, “Analytical Electron Microscopy for Materials Science,” Springer, Japan (2002).
Chapter 3
3.1 Y. Yin, G. Zhang, and Y. Xia, “Synthesis and Characterization of MgO Nanowires Through a Vapor Phase Precursor Method,” Adv. Funct. Mater., 12, (2002), pp 293-298.
3.2 B. Wang, J. Zhao, J. Jia, D. Shi, J. Wan, and G. Wang, “Structural, Mechanical, and Electronic Properties of Ultrathin ZnO Nanowires,” Appl. Phys. Lett., 93, (2008), pp 021918-021920.
3.3 Q Wan, E. Dattoli, and W. Lu, “Doping-dependent Electrical Characteristics of SnO2 Nanowires,” Small, 4, (2008), pp 451-454.
3.4 D. Lin, H. Wu, R. Zhang, and W. Pan, “Preparation and Electrical Properties of Electrospun Tin-doped Indium Oxide Nanowires,” Nanotechnology, 18, (2007), pp 465301-465318.
3.5 C. H. Hsieh, M. T. Chang, Y. J. Chien, L. J. Chou, L. J. Chen, and C. D. Chen, “Coaxial Metal-Oxide-Semiconductor (MOS) Au/Ga2O3/GaN Nanowires: for Nitride Based Logic Nanodevices,” Nano Lett., 8, (2008), pp 3288-3292.
3.6 X. S. Peng, X. F. Wang, Y. W. Wang, C. Z. Wang, G. W. Meng, and L. D. Zhang, “Novel Method Synthesis of CdO Nanowires,” J. Phys. D: Appl. Phys., 35, (2002), pp L101–L104.
3.7 W. Cheng, E. Baudrin, B. Dunn, and J. I. Zink, “Synthesis and Electrochromic Properties of Mesoporous Tungsten Oxide,” J. Mater. Chem., 11, (2001), pp 92-97.
3.8 Y. S. Kim, S. C. Ha, K. Kim, H. Yang, J. T. Park, C. H. Lee, J. Choi, J. Peak, and K. Lee, “Room-temperature Semiconductor Gas Sensor Based on Nonstoichiometric Tungsten Oxide Nanorod Film,” Appl. Phys. Lett., 86, (2005), pp 213105-213107.
3.9 A. Shengelaya, S. Reich, Y. Tsabba, and K. A. Müller, “Electron Spin Resonance and Magnetic Susceptibility Suggest Superconductivity in Na Doped WO3 Samples,” Eur. Phys. J. B, 12, (1998), pp 13-15.
3.10 Y. Q. Zhu, W. Hu, W. K. Hsu, M. Terrones, N. Grobert, J. P. Hare, H. W. Kroto, and D. R. M. Walton, “Tungsten Oxide Tree-like Structures,” Chem. Phys. Lett., 309, (1999), pp 327-334.
3.11 H. Qi, C. Wang, and J. Liu, “A Simple Method for the Synthesis of Highly Oriented Potassium-Doped Tungsten Oxide Nanowires,” Adv. Mater., 15, (2003), pp 411-414.
3.12 B. C. Satishkumar, A. Govindaraj, M. Nath, and C. N. R. Rao, “Synthesis of Metal Oxide Nanorods Using Carbon Nanotubes as Templates,” J. Mater. Chem., 10, (2000), pp 2115-2119.
3.13 Y. Li , Y. Bando, and D. Golberg, “Quasi-Aligned Single-Crystalline W18O49 Nanotubes and Nanowires,” Adv. Mater., 15, (2003), pp 1294-1296.
3.14 G. Gu, B. Zheng, W. Q. Han, S. Roth, and J. Liu, “Tungsten Oxide Nanowires on Tungsten Substrates,” Nano Lett., 2, (2002), pp 849-851.
3.15 K. Liu, D. T Foord, and L. Scipioni, “Easy Growth of Undoped and Doped Tungsten Oxide Nanowires with High Purity and Orientation,” Nanotechnology, 16, (2005), pp 10-14.
3.16 Z. Liu, Y. Bando, and C. Tang, “Synthesis of Tungsten Oxide Nanowires,” Chem. Phys. Lett., 372, (2003), pp 179-182.
3.17 M. Feng, A. L. Pan, H. R. Zhang, Z. A. Li, F. Liu, H. W. Liu, D. X. Shi, B. S. Zou, and H. J. Gao, “Strong Photoluminescence of Nanostructured Crystalline Tungsten Oxide Thin Films,” Appl. Phys. Lett., 86, (2005), pp 141901-141903.
3.18 Y. B. Li, Y. Bando, D. Golberg, and K. Kurashima, “WO3 Nanorods/nanobelts Synthesized via Physical Vapor Deposition Process,” Chem. Phys. Lett., 367, (2003), pp 214-218,.
3.19 X. L. Li, J. F. Liu, and Y. D. Li, “Large-Scale Synthesis of Tungsten Oxide Nanowires with High Aspect Ratio,” Inorg. Chem., 42, (2003), pp 921-924.
3.20 S. J. Wang, C. H. Chen, R. M. Ko, Y. C. Kuo, C. H. Wong, and C. H. Wu, “Preparation of Tungsten Oxide Nanowires from Sputter-deposited WC Films Using an Annealing/oxidation,” Appl. Phys. Lett., 86, (2005), pp 263103-263105,.
3.21 J. Liu, Z. Zhang, Y. Zhao, X. Su, S. Liu, and E. Wang, “Tuning the Field-Emission Properties of Tungsten Oxide Nanorods,” Small, 1, (2005), pp 310-313.
3.22 J. Liu, Y. Zhao, and Z. Zhang, “Low-temperature Synthesis of Large-scale Arrays of Aligned Tungsten Oxide Nanorods,” J. Phys.: Condens. Matter., 15, (2003), pp L453-L461.
3.23 J. Zhou, Y. Ding, S. Z. Deng, L. Gong, N. S. Xu, and Z. L. Wang, “Three-dimensional Tungsten Oxide Nanowire Networks,” Adv. Mater., 17, (2005), pp 2107-2110.
3.24 S. K. Pradhan, P. J. Reucroft, F. Yang, and A. Dozier, “Growth of TiO2 Nanorods by Metalorganic Chemical Vapor Deposition,” J. Crystal Growth, 256, (2003), pp 83-88.
Chapter 4
4.1 Y. C. Lee, Y. L. Chueh, C. H. Hsieh, M. T. Chang, L. J. Chou, Z. L. Wang Y. W. Lan, C. D. Chen, H. Kurata, and S. Isoda “P-type α-Fe2O3 Nanowire and its N-type Transition at Reductive Ambient,” Small, 3, (2007), pp 1356-1361.
4.2 C. H. Ye, X. S. Fang, Y. F. Hao, X. M. Teng, and L. D. Zhang, “Zinc Oxide Nanostructures: Morphology Derivation and Evolution,” J. Phys. Chem. B, 109, (2005), pp 19758-19765.
4.3 X. Zhang, Y. G. Guo, W. M. Liu, and J. C. Hao, “CuO Three-dimensional Flowerlike Nanostructures: Controlled Synthesis and Characterization,” J. Appl. Phys., 103, (2008), pp 114304-114306.
4.4 Y. F. Hao, G. W. Meng, C. H. Ye, X. R. Zhang, and L. D. Zhang, “Kinetics-driven Growth of Orthogonally Branched Single Crystalline Magnesium Oxide Nanostructures,” J. Phys. Chem. B, 109, (2005), pp 11204-11208.
4.5 S. Wang, M. W. Shao , G. Shao, H. Wang, and L. Cheng, “Room Temperature and Long-lasting Blue Phosphorescence of Cr-doped Alpha-Al2O3 Nanowires,” Chem. Phys. Lett., 460, (2008), pp 200-204.
4.6 Y. Liu, C. Yin, W. Wang, Y. Zhan, and G. J. Wang, “Synthesis of Cadmium Oxide Nanowires by Calcining Precursors Prepared in a Novel Inverse Microemulsion,” J. Mater. Sci. Lett., 21, (2002), pp 137-139.
4.7 Z. R. Dai, Z. W. Pan, and Z. L. Wang, “Novel Nanostructures of Functional Oxides Synthesized by Thermal Evaporation,” Adv. Funct. Mater., 13, (2003), pp 9-24.
4.8 Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of Semiconducting Oxides,” Science, 291, (2001), pp 1947-1949.
4.9 W. Cheng, E. Baudrin, B. Dunn, and J. I. Zink, “Synthesis and Electrochromic Properties of Mesoporous Tungsten Oxide,” J. Mater. Chem., 11, (2001), pp 92-97
4.10 D. Cummins, G. Boschloo, R. Michael, D. Corr, N. S. Rao, and D. Fitzmauric, “Ultrafast Electrochromic Windows Based on Redox-Chromophore Modified Nanostructured Semiconducting and Conducting Films,” J. Phys. Chem. B, 104, (2000), pp 11449-11459.
4.11 A. R. Siedle, T. E. Wood, M. L. Brostrom, D. C. Koskenmaki, B. Montez, and E. Oldfield, “Solid State Polymerization of Molecular Metal Oxide Clusters: Aluminum 12-Tungstophosphate,” J. Am. Chem. Soc., 111, (1989), pp 1665-1669.
4.12 J. Zhou, Y. Ding, S. Z. Deng, L. Gong, N. S. Xu, and Z. L. Wang, “Three-dimensional Tungsten Oxide Nanowire Networks,” Adv. Mater., 17, (2005), pp 2107-2110.
4.13 O. Y. Khyzhun, “XPS, XES and XAS Studies of the Electronic Structure of Tungsten Oxides,” J. Alloy. Compd., 305, (2000), pp 1-6.
4.14 F. Verpoort, A. R. Bossuyt, and L. Verdonck, “Olefin Metathesis Catalyst. III. Angle-resolved XPS and Depth Profiling Study of a Tungsten Oxide Layer on Silica,” J. Electron Spectrosc. Relat. Phenom., 82, (1996), pp 151-163.
4.15 H. L. Zhang, D. Z. Wang, and N. K. Huang, “The Effect of Nitrogen Ion Implantation on Tungsten Surfaces,” Appl. Surf. Sci., 150, (1999), pp 34-38.
4.16 N. Cabrera, and W. K. Burton, “Crystal Growth and Surface Structure,” Part II Discuss. Faraday Soc., 5, (1949), pp 40-48.
4.17 http://cea.grc.nasa.gov/
4.18 H. Lee, J. S. Harris, and Jr., “Vapor Phase Epitaxy of GaN Using GaCl3/N2 and NH3/N2,” J. Cryst. Growth, 169, (1996), pp 689-696.
4.19 K. H. Yoon, J. W. Lee, Y. S. Cho, and D. H. Kang, “Structural and Photocurrent–voltage Characteristics of Tungsten Oxide Thin Films on P –GaAs,” Appl. Phys. Lett., 68, (1996), pp 572-574.
4.20 L. J. Chen, “Metal silicides: an Integral Part of Microelectronics,” JOM, 57 , (2005), pp 24-30.
4.21 H. Okino, I. Matsuda, R. Hobara, Y. Hosomura, and S. Hasegawa, “In situ Resistance Measurements of Epitaxial Cobalt Silicide Nanowires on Si (110),” Appl. Phys. Lett., 86, (2005), pp 233108-1-233108-3.
4.22 K. S. Dieter, “Semiconductor Material And Device Characterization 2nd,” Wiley –Interscience, (1998), pp 47.
4.23 K. Miyake, H. Kaneko, M. Sano, and N. Suedomi, “Physical and Electrochromic Properties of the Amorphous and Crystalline Tungsten Oxide Thick Films Prepared under Reducing Atmosphere,” J. Appl. Phys., 55, (1984), pp 2747-2753.
4.24 M. G. Hutchins, N. A. Kamel, N. El-Kadry, A. A. Ramadan, and K. Abdel-Hady, “Preparation and Properties of Electrochemically Deposited Tungsten Oxide Films,” phys. stat. sol. (a), 175, (1999), pp 991-1002.
4.25 P. Kofstad, “Nonstoichiometry Diffusion and Electrical Conductivity in Binary Metal Oxides,” Wiley, New York, (1972), pp 208.
4.26 X. S. Peng, L. D. Zhang, G. W. Meng, X. F. Wang, Y. W. Wang, C. Z. Wang, and G. S. Wu, “Photoluminescence and Infrared Properties of r-Al2O3 Nanowires and Nanobelts,” J. Phys. Chem. B, 106, (2002), pp 11163-11167.
4.27 Y. Dai, Y. Zhang, Q. K. Li, and C. W. Nan, “Synthesis and Optical Properties of Tetrapod-like Zinc Oxide Nanorods,” Chem. Phys. Lett., 358, (2002), pp 83-86.
4.28 Y. L. Chueh, L. J. Chou, C. A. Hsu, and S. C. Kung, “Synthesis and Characterization of Taper- and Rodlike Si Nanowires on SiXGe1-X Substrate,” J. Phys. Chem. B, 109, (2005), pp 21831-21835
4.29 Y. B. Li, Y. Bando, and D. Golberg, “MoS2 Nanoflowers and Their Field-emission Properties,” Appl. Phys. Lett., 82, (2003), pp 1962-1964.
4.30 Y. Li , Y. Bando, and D. Golberg, “Quasi-Aligned Single-Crystalline W18O49 Nanotubes and Nanowires,” Adv. Mater., 15, (2003), pp 1294-1296.
4.31 J. Liu, Z. Zhang, Y. Zhao, X. Su, S. Liu, and E. Wang, “Tuning the Field-Emission Properties of Tungsten Oxide Nanorods,” Small, 1, (2005), pp 310-313.
4.32 C. Y. Zhi, X. D. Bai, and E. G. Wang, “Enhanced Field Emission from Carbon Nanotubes by Hydrogen Plasma Treatment,” Appl. Phys. Lett., 81, (2002), pp 1690-1692.
4.33 L. Yuming, and F. Shoushan, “Field Emission Properties of Carbon Nanotubes Grown on Silicon Nanowire Arrays,” Solid State Commun., 133, (2005), pp 131-134.
4.34 R. H. Fowler, and L. W. Nordheim, “Electron Emission in Intense Electric Fields,” Proc. R. Soc. London A, 119, (1928), pp 173-181.
4.35 G. Vida, V. K. Josepovits, M. Gyor, and P. Deak, “Characterization of Tungsten Surfaces by Simultaneous Work Function and Secondary Electron Emission Measurements,” Microsc. Microanal., 9, (2003), pp 337-342
4.36 M. Gillet, R. Delamare, and E. Gillet, “Growth, Structure and Electrical Properties of Tungsten Oxide Nanorods,” Eur. Phys. J. D, 34, (2005), pp 291-294.
4.37 J. Purans, A. Kuzmin, Ph. Parent, and C. Laffon, “Study of the Electronic Structure of Rhenium and Tungsten Oxides on the O K-edge,” Physica B, 259-261, (1999), pp 1157-1158.
Chapter 5
5.1 Z. Miao, D. Xu, J. Ouyang, G. Guo, X. Zhao, and Y. Tang, “Electrochemically Induced Sol-Gel Preparation of Single-Crystalline TiO2 Nanowires,” Nano Lett., 2, (2002), pp 717-720.
5.2 C. L. Hsin, J. H. He, C. Y. Lee, W. W. Wu, P. H. Yeh, L. J. Chen, and Z. L. Wang, “Lateral Self-Aligned p-Type In2O3 Nanowire Arrays Epitaxially Grown on Si Substrates,” Nano Lett., 7, (2007), pp 1799-1803.
5.3 C. H. Hsieh, L. J. Chou, G. R. Lin, Y. Bando, and D. Golberg “Nanophotonic Switch: Gold-in-Ga2O3 Peapod Nanowires,” Nano Lett., 8, (2008), pp 3081-3085.
5.4 L. Q. Mai, B. Hu, W. Chen, Y. Y. Qi, C. S. Lao, R. S. Yang, and Z. L. Wang, “Lithiated MoO3 Nanobelts with Greatly Improved Performance for Lithium Batteries,” Adv. Mater., 19, (2007) pp 3712–3716.
5.5 J. H. Song, X. D. Wang, J. Liu, H. B. Liu, Y. L. Li, and Z. L. Wang, “Piezoelectric Potential Output from ZnO Nanowire Functionalized with p-Type Oligomer,” Nano Lett., 8, (2008), pp 203-207.
5.6 Y. L. Chueh, C. H. Hsieh, M. T. Chang, L. J. Chou, C. S. Lao, J. H. Song, J. Y. Gan, and Z. L. Wang, “RuO2 Nanowires and RuO2/TiO2 Core/Shell Nanowires: From Synthesis to Mechanical, Optical, Electrical, and Photoconductive Properties,” Adv. Mater., 19, (2007), pp 143-149.
5.7 Y. Ding, J. R. Morber, R. L. Snyder, and Z. L. Wang, “Nanowire Structural Evolution from Fe3O4 to α-Fe2O3,” Adv. Funct. Mater, 17, (2007), pp 1172-1178.
5.8 M. T. Chang, L. J. Chou, Y. L. Chueh, Y. C. Lee, C. H. Hsieh, C. D. Chen, Y. W. Lan and L. J. Chen, “Nitrogen-Doped Tungsten Oxide Nanowires: Low-Temperature Synthesis on Si, and Electrical, Optical, and Field-Emission Properties,” Small, 3, (2007), pp 658-664,.
5.9 Y. L. Chueh, L. J. Chou, and Z. L. Wang, “SiO2/Ta2O5 Core–Shell Nanowires and Nanotubes,” Angew. Chem. Int. Ed., 45, (2006), pp 7773-7778.
5.10 C. Lao, Y. Li, C. P. Wong, and Z. L. Wang, “Enhancing the Electrical and Optoelectronic Performance of Nanobelt Devices by Molecular Surface Functionalization,” Nano Lett., 7, (2007), pp 1323-1328.
5.11 Y. C. Lee, Y. L. Chueh, C. H. Hsieh, M T Chang, L J. Chou, Z. L. Wang Y. W. Lan, C. D. Chen, H. Kurata, and S. Isoda, “p-Type a-Fe2O3 Nanowires and their n-Type Transition in a Reductive Ambient,” Small, 3, (2007), pp 1356-1361.
5.12 X. Wang, J. Song, J. Liu, and Z. L. Wang, “Direct-Current Nanogenerator Driven by Ultrasonic,” Science, 316, (2007), pp 102-105.
5.13 M. Law, L. Greene, J. C. Johnson, R. Saykally, and P. D. Yang, “Nanowire Dye-sensitized Solar Cells,” Nat. Mater., 4, (2005), pp 455-459.
5.14 Y. Qin, X. D. Wang, and Z. L. Wang, “Microfibre–nanowire Hybrid Structure for Energy Scavenging,” Nature, 451, (2008), pp 809-813.
5.15 J. Chen, L. Xu, W. Li, and X. Gou “ -Fe2O3 Nanotubes in Gas Sensor and Lithium-Ion Battery Applications,” Adv. Mater., 17, (2005), pp 582-586.
5.16 M. T. Chang, L. J. Chou, C. H. Hsieh, Y. L. Chueh, Z. L. Wang, Y. Murakami, and D. Shindo, “Magnetic and Electrical Characterizations of Half-Metallic Fe3O4 Nanowires,” Adv. Mater., 19, (2007), pp 2290-2294.
5.17 B. Lei, S. Han, C. Li, D. Zhang, Z. Liu, and Chongwu Zhou, “Synthesis and Electronic Properties of Transition Metal Oxide Core–shell Nanowires,” Nanotechnology, 18, (2007), pp 044019-044027.
5.18 D. A. Muller, N. Nakagawa1, A. Ohtomo1, J. L. Grazul1, and H. Y. Hwang, “Atomic-scale Imaging of Nanoengineered Oxygen Vacancy Profiles in SrTiO3,” Nature, 430, (2004), pp 657-661.
5.19 A. Howie, “Image-Contrast and Localized Signal Selection Techniques,” J. Microsc., 17, (1979), pp 11–23.
5.20 E. J. Kirkland, R. F. Loane, and J. Silcox, “Simulation of Annular Dark Field Stem Images Using a Modified Multislice Method,” Ultramicroscopy, 23, (1987), pp 77-96.
5.21 S. E. Hillyard, and J. Silcox, “Detector Geometry, Thermal Diffuse Scattering and Strain Effects in ADF STEM Imaging,” Ultramicroscopy, 58, (1995), pp 6-17.
5.22 C. Colliex, T. Manoubi, and C. Ortiz, “Electron-Energy-Loss-Spectroscopy Near Edge Fine Structures in the Iron Oxide Systems,” Phys. Rev. B, 44, (1991), pp 11402-11411.
5.23 H. Kurata, E. lefevre, C. Collies, and R. Brgdson, “Electron-Energy-Loss-Spectroscopy Near Edge Structures in the Oxygen K-edge Spectra of Transition Metal Oxides,” Phys. Rev. B, 47, (1993), pp 13763-13768.
5.24 Z. L. Wang, J. S. Yin, Y. D. Jiang, and J. Zhang, “Studies of Mn Valence Conversion and Oxygen Vacancies in La12xCaxMnO32y Using Electron Energy-Loss Spectroscopy,” Appl. Phys. Lett., 70, (1997), pp 3362-3364.
5.25 H. Yamada, and G. R. Miller, “Point Defects in Reduced Strontium Titanate,” J. Solid State Chem., 6, (1973), pp 169–177.
Chapter 6
6.1 H. Y. Hwang, and S. W. Cheong, “Enhanced Intergrain Tunneling Magnetoresistance in Half-Metallic CrO2 Films,” Science, 278, (1997), pp 1607-1609.
6.2 J. H. Park, E. Vescovo, H. J. Kim, C. Kwon, R. Ramesh, and T. Venkatesan, “Direct Evidence for a Half-Metallic Ferromagnet,” Nature, 392, (1998), pp 794-796.
6.3 Z. Zhang, and S. Satpathy, “Electron States, Magnetism, and the Verwey Transition in Magnetite,” Phys. Rev. B, 44, (1991), pp 13319-13331.
6.4 M. N. Baibich, J. M. Broto, A. Fert, F. N. V. Dau, F. Petroff, P. Etiene, G. Creuzet, A. Friederich, and J. Chazelas, “Giant Magnetoresistance of (001) Fe/(001) Cr Magnetic Superlattices,” Phys. Rev. Lett., 61, (1988), pp 2472-2475.
6.5 W. Eerenstein, T. T. M. Palstra, S. S. Saxena, and T. Hibma, “Origin of the Increased Resistivity in Epitaxial Fe3O4 Films,” Phys. Rev. B., 66, (2002), pp 201101-1-201101-4.
6.6 G. Q. Gong, A. Gupta, G. Xiao, W. Qian, and V. P. Dravid, “Magnetoresistance and Magnetic Properties of Epitaxial Magnetite Thin Films,” Phys. Rev. B, 56, (1997), pp 5096-5099.
6.7 X. W. Li, A. Gupta, G. Xiao, and G. Q. Gog, “Transport and Magnetic Properties of Epitaxial and Polycrystalline Magnetite Thin Films,” J. Apl. Phys., 83, (1998), pp 7049-7051.
6.8 J. M. D. Coey, A. E. Berkowitz, L. I. Balcells, F.F. Putris, and F. T. Parker, “Magnetoresistance of Magnetite,” Appl. Phys. Lett., 72, (1998), pp 734-736.
6.9 D. L. Peng, T. Asai, N. Nozawa, T. Hihara, and K. Sumiyama, “Magnetic Properties and Magnetoresistance in Small Iron Oxide Cluster Assemblies,” Appl. Phys. Lett., 81, (2002), pp 4598-4600.
6.10 M. Venkatesan, S. Nawka, S. C. Pillai, and J. M. D. Coey, “Enhanced Magnetoresistance in Nanocrystalline Magnetite,” J. Appl. Phys., 93, (2003), pp 8023-8025.
6.11 D. Zhang, Z. Liu, S. Han, C. Li, B. Lei, M. P. Stewart, and J. M. Tour, C. Zhou, “Magnetite (Fe3O4) Core-Shell Nanowires: Synthesis and Magnetoresistance,” Nano Lett., 4, (2004), pp 2151-2155.
6.12 Z. Liu, D. Zhang, S. Han, C. Li, B. Lei, W. Lu, J. Fang, and C. Zhou, “Single Crystalline Magnetite Nanotubes,” J. Am. Chem. Soc., 127, (2005), pp 6-7.
6.13 G. Reiss, and A. Hutten, “Applications Beyond Data Storage,” Nat. Mater., 4, (2005), pp 725-726.
6.14 Y. L. Chueh, M. W. Lai, J. Q. Liang, L. J. Chou, and Z. L. Wang, “Systematic Study of the Growth of the Aligned Arrays of α-Fe2O3 and Fe3O4 Nanowires by a Vapor-Solid Process,” Adv. Funct. Mater., 16, (2006), pp 2243-2251.
6.15 D. Shindo, and T. Oikawa, “Analytical Electron Microscopy for Materials Science,” Springer-Verlag, Tokyo, (2002).
6.16 A. Tonomura, “Electron Holography,” 2nd Ed, Springer-Verlag, Tokyo, (1999) , pp 78.
6.17 E. Volkl, L. F. Allard, and D. C. Joy, “Introduction to Electron Holography,” Kluwer Academic/Plenum Publishers, New York (1999).
6.18 K. Fuchs, “The Conductivity of Thin Metallic Films According to the Electro Theory of Metals,” Proc. Cambridge Philos. Soc., 34, (1938), pp 100-108.
6.19 E. H. Sondheimer, “The Mean Free Path of Electrons in Metals,” Adv. Phys., 1, (1952), pp 1-42.
6.20 K. L. Chopra, “Thin Film Phenomena,” McGraw-Hill, New York, (1969), pp 345.
6.21 W. Wu, S. H. Brongersma, M. V. Hove, and K. Maex, “Influence of Surface and Grain-Boundary Scattering on the Resistivity of Copper in Reduced Dimensions,” Appl. Phys. Lett., 84, (2004), pp 2838-2840.
6.22 E. J. W. Verwey, and P. W. Haayman, “Electronic Conductivity and Transition Point of Magnetite (Fe3O4),” Physica, 8, (1941), pp 979-987.
6.23 J. H. Park, L. H. Tjeng, J. W. Allen, P. Metcalf, and C. T. Chen, “Single-Particle Gap above the Verwey Transition in Fe3O4,” Phys. Rev. B, 55, (1997), pp 12813-12817.
6.24 F. Walz, “The Verwey Transition—a Topical Review,” J. Phys.: Condens. Matter., 14, (2002), pp R285-R340.
6.25 T. Yang, C. Shen, Z. Li, H. Zhang, C. Xiao, S. Chen, Z. Xu, D. Shi, J. Li, and H. Gao, “Highly Ordered Self-Assembly with Large Area of Fe3O4 Nanoparticles and the Magnetic Properties,” J. Phys. Chem. B, 109, (2005), pp 23233-23236.
6.26 F. C. Voogt, T. T. M. Palstra, L. Niesen, O. C. Rogojanu, M. A. James, and T. Hibma, “Superparamagnetic Behavior of Structural Domains in Epitaxial Ultrathin Magnetite Films”, Phys. Rev. B, 57, (1998), pp R8107-R8110.
6.27 W. Kim, K. Kawaguchi, N. Koshizaki, M. Sohma, and Tetsuro Matsumoto, “Fabrication and Magnetoresistance of Tunnel Junctions Using Half-Metallic Fe3O4,” J. Appl. Phys., 93, (2003), pp 8032-8034.
6.28 A. J. Rondinone, A. C. S. Samia, and Z. J. Zhang, “Superparamagnetic Relaxation and Magnetic Anisotropy Energy Distribution in CoFe2O4 Spinel Ferrite Nanocrystallites,” J. Phys. Chem. B, 103, (1999), pp 6876-6880.
6.29 A. Tonomura, T. Matsuda, T. Endo, J. Arii, and K. Mihama, “Holographic Interference Electron Microscopy for Determining Specimen Magnetic Structure and Thickness Distribution,” Phys. Rev. B, 34, (1986), pp 3397-3402.
Chapter 7
7.1 C. Yang, Z. Zhong, and C. M. Lieber, “Encoding Electronic Properties by Synthesis of Axial Modulation-Doped Silicon Nanowires,” Science, 310, (2005), pp 1304-1307.
7.2 F. Qian, Y. Li, S. Gradecak, D. Wang, C. Barrelet, and C. M. Lieber, “Gallium Nitride-Based Nanowire Radial Heterostructures for Nanophotonics,” Nano Lett., 4, (2004), pp 1975-1979.
7.3 Y. Cui, Q. Wei, H. Park, and C. M. Lieber, “Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species,” Science, 293, (2001), pp 1289-1292.
7.4 X. D. Wang, C. J. Summers, and Z. L. Wang, “Large-Scale Hexagonal-Patterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and Nanosensor Arrays,” Nano Lett., 4, (2004), pp 423-426.
7.5 M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Photovoltaic Measurements in Single-Nanowire Silicon Solar Cells,” Nano Lett., 8, (2008), pp 710-714.
7.6 M. T. Chang, L. J. Chou, Y. L. Chueh, Y. C. Lee, C. H. Hsieh, C. D. Chen, Y. W. Lan, and L. J. Chen, “Nitrogen-Doped Tungsten Oxide Nanowires: Low Temperature Synthesis on Si and the Electrical, Optical, and Field-Emission Properties,” Small, 3, (2007), pp 658-664.
7.7 M. T. Chang, L. J. Chou, C. H. Hsieh, Y. L. Chueh, Z. L. Wang, Y. Murakami, and D. Shindo, “Magnetic and Electrical Characterizations of the Half-Metallic Magnetite (Fe3O4) Nanowires,” Adv. Mater., 19, (2007), pp 2290-2294.
7.8 Y. Huang, X. Duan, and C. M. Lieber, “Nanowires for Integrated Multicolor Nanophotonics,” Small, 1, (2005), pp 142-147.
7.9 A. Javey, S. Nam, R. S. Friedman, H. Yan, and C. M. Lieber, “Layer-by-Layer Assembly of Nanowires for Three-Dimensional, Multifunctional Electronics,” Nano Lett., 7, (2007), pp 773-777.
7.10 J. Xiang, W. Lu, Y. J. Hu, Y. Wu, H. Yan, and C. M. Lieber, “Ge/Si Nanowire Heterostructures as High Performance Field-Effect Transistors,” Nature, 441, (2006), pp 489-493.
7.11 X. F. Duan, J. F. Wang, and C. M. Lieber, “Synthesis and Optical Properties of Gallium Arsenide Nanowires,” Appl. Phys. Lett., 76, (2000), pp 1116-1118.
7.12 L. E. Jensen, M. T. Bjork, S. Jeppesen, A. I. Persson, B. J. Ohlsson, and L. Samuelson, “Role of Surface Diffusion in Chemical Beam Epitaxy of InAs Nanowires,” Nano Lett., 4, (2004), pp 1961-1964.
7.13 Y. Huang, X. F. Duan, Y. Cui, and C. M. Lieber, “Gallium Nitride Nanowire Nanodevices,” Nano Lett., 2, (2002), pp 101-104.
7.14 G. F. Zheng, W. Lu, S. Jin, and C. M. Lieber, “Synthesis and Fabrication of High-Performance n-Type Silicon Nanowire Transistors,” Adv. Mater., 16, (2004), pp 1890-1893.
7.15 L. J. Chen, “Metal silicides: An Integral Part of Microelectronics,” JOM, 57, (2005), pp 24-30.
7.16 Y. Wu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber, “Single-Crystal Metallic Nanowires and Metal/semiconductor Nanowire Heterostructures,” Nature, 430, (2004), pp 61-65.
7.17 L. F. Dong, J. Bush, V. Chirayos, R. Solanki, J. Jiao, Y. Ono, J. F. Conley, Jr., and B. D. Ulrich, “Dielectrophoretically Controlled Fabrication of Single-Crystal Nickel Silicide Nanowire Interconnects,” Nano Lett., 5, (2005), pp 2112-2115.
7.18 Y. P. Song, A. L. Schmitt, and S. Jin, “Ultralong Single-Crystal Metallic Ni2Si Nanowires with Low Resistivity,” Nano Lett., 7, (2007), pp 965-969.
7.19 H. C. Hsu, W. W. Wu, H. F. Hsu, and L. J. Chen, “Growth of High-Density Titanium Silicide Nanowires in a Single Direction on a Silicon Surface,” Nano Lett., 7, (2007), pp 885-889.
7.20 J. J. Kim, D. Shindo, Y. Murakami, L. J. Chou, and Y. L. Chueh, “Direct Observation of Field Emission in a Single TaSi2 Nanowire,” Nano Lett., 7, (2007), pp 2243-2247.
7.21 Y. L. Chueh, M. T. Ko, L. J. Chou, L. J. Chen, C. S. Wu, and C. D. Chen, “TaSi2 Nanowires: a Potential Field Emitter and Interconnect,” Nano Lett., 6, (2006), pp 1637-1644.
7.22 Y. L. Chueh, L. J. Chou, C. A. Hsu, and S. C. Kung, “Synthesis and Characterization of Taper- and Rodlike Si Nanowires on SixGe1-x Substrate,” J. Phys. Chem. B, 109, (2005), pp 21831-21835.
7.23 S. T. Lee, N. Wang, Y. F. Zhang, and Y. H. Tang, “Oxide-Assisted Semiconductor Nanowire Growth,” MRS Bull., 24(8), (1999), pp 36-42.
7.24 W. M. Weber, L. Geelhaar, A. P. Graham, E. Unger, G. S. Duesberg, M. Liebau, W. Pamler, C. Cheze, H. Riechert, P. Lugli, and F. Kreupl, “Silicon-Nanowire Transistors with Intruded Nickel-Silicide Contacts,” Nano Lett., 6, (2006), pp 2660-2666.
7.25 C. H. Dauben, D. H. Templeton, and C. E. Myers, “The Crystal Structure of Cr5Si3,” J. of Phys. Chem., 60, (1956), pp 443-445.
7.26 Y. N. Wen, and H. M. Zhang, “Surface Energy Calculation of the FCC Metals by Using the MAEAM,” Solid State Commun., 144, (2007), pp 163-167.
7.27 D. A. Neamen, “Semiconductor Physics & Devices,” 3rd Ed. Ch. 8, (2005), pp 307.
7.28 R. H. Fowler, and L. W. Nordheim, “Electron Emission in Intense Electric Fields,” Proc. R. Soc. London A, 119, (1928), pp 173-181.