研究生: |
許恩嘉 Hsu, An-Chia |
---|---|
論文名稱: |
基頻相位不匹配對非線性超短脈衝量測方法之數值研究 Numerical Study of the Impacts of Fundamental Phase-Mismatch on Nonlinear Ultrashort Pulse Measurements |
指導教授: |
楊尚達
Yang, Shang-Da |
口試委員: |
林明緯
Lin, Ming-Wei 籔下篤史 Atsushi, Yabushita |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 46 |
中文關鍵詞: | 超快光學 、超短脈衝量測 、相位不匹配 、二倍頻 |
外文關鍵詞: | Ultrafast optics, Ultrashort pulse measurement, Phase-mismatch, Second-harmonic generation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著孤立埃秒脈衝產生技術的發展,可見至近紅外光之單週期寡載波之重要性日益提升。因此,以非線性方法產生超連續光譜並壓縮該脈衝至轉換極限已然成為此領域的必備技術。目前已存在許多量測脈衝完整資訊的方法,其中,「頻率解析光柵」或「修正場自相關干涉量測法」之類以二階非線性現象作為原理的量測技術擁有較其他方法更高的靈敏度。由於在某些實驗架構中,「修正場自相關干涉量測法」使用厚非線性晶體來達成頻率轉換與濾波,其靈敏度更是有明顯的優勢。
在此研究前,群相速不匹配被認為是在「修正場自相關干涉量測法」中選擇非線性晶體的唯一限制,並因此訂定了小於百分之五脈衝展寬作為標準。在此一研究中,我們發現了另一個有更加深遠影響的機制並稱之為「基頻相位不匹配」。在發展「修正場自相關干涉量測法」理論時,為了得到解析解而使用了「轉換函數」模型,此一機制因而沒有被發現。然而隨著脈衝頻寬逐漸展寬,此一模型的有效程度便逐步降低。在此論文中,我們描述「基頻相位不匹配」的數學模型並以數值方法分析其對「頻率解析光柵」與「修正場自相關干涉量測法」之脈衝重建結果的影響。我們的模擬顯示,在考慮「基頻相位不匹配」的情形下,當使用同樣厚度之非線性晶體,「修正場自相關干涉量測法」得到相較於「頻率解析光柵」更低的錯誤率。最後,我們用數值方法說明「基頻相位不匹配」確實是造成「修正場自相關干涉量測法」解析錯誤的其中一個主要成因。
Single-to-sub-cycle pulses in the visible-to-infrared regime have gain importance in generating isolated attosecond bursts. Therefore, generating octave-spanning spectra and compress them to transform-limited pulses have become a routine work. There are many existing techniques that completely characterize ultrashort pulses. Among them, techniques that utilize second-order nonlinearity like second-harmonic generation frequency-resolved optical gating (SHG-FROG) and modified interferometric field autocorrelation (MIFA) are known for their high sensitivity. MIFA especially has the edge since in some setups, thick nonlinear crystals are used to not only perform second-harmonic generation but also act as a spectral filter.
Prior to this work, we believed the choice of nonlinear crystal in MIFA is only limited by group velocity dispersion (GVD) and set the criterion of 5% full width at half maximum pulse-width expansion as tolerance. However, we’ve discovered in the work that there exists a more profound limitation, and coined the name “fundamental phase-mismatch.” This effect was neglected because of the use of transfer function model while developing the formulation of MIFA, the model loses its validity as spectral bandwidth increases. In this thesis, we describe in detail the formulation of fundamental phase-mismatch and analyze numerically how it influences the retrieve results of SHG-FROG and MIFA. Our simulation shows even in the presence of fundamental phase-mismatch, MIFA performs superior to SHG-FROG in terms of retrieve error with the same thickness of nonlinear crystal used. Finally, we show numerically that fundamental phase-mismatch is indeed a primary factor of MIFA retrieve error and give numbers on how error changes with different thicknesses of nonlinear crystal used.
[1] Weiner, A., 2011. Ultrafast optics (Vol. 72). John Wiley & Sons.
[2] M. Lucchini, M.H. Brügmann, A. Ludwig, L. Gallmann, U. Keller, and T. Feurer, "Ptychographic reconstruction of attosecond pulses," Opt. Express 23, 29502-29513 (2015)
[3] Pavel Sidorenko, Oren Lahav, Zohar Avnat, and Oren Cohen, "Ptychographic reconstruction algorithm for frequency-resolved optical gating: super-resolution and supreme robustness," Optica 3, 1320-1330 (2016)
[4] Daniel J. Kane, "Principal components generalized projections: a review [Invited]," J. Opt. Soc. Am. B 25, A120-A132 (2008)
[5] K. W. DeLong, Rick Trebino, J. Hunter, and W. E. White, "Frequency-resolved optical gating with the use of second-harmonic generation," J. Opt. Soc. Am. B 11, 2206-2215 (1994)
[6] Gagnon, Justin, Eleftherios Goulielmakis, and Vladislav S. Yakovlev. "The accurate FROG characterization of attosecond pulses from streaking measurements." Applied Physics B 92.1 (2008): 25-32.
[7] Pavel Sidorenko, Oren Lahav, Zohar Avnat, and Oren Cohen, "Ptychographic reconstruction algorithm for frequency-resolved optical gating: super-resolution and supreme robustness," Optica 3, 1320-1330 (2016)
[8] Rana Jafari, Travis Jones, and Rick Trebino, "100% reliable algorithm for second-harmonic-generation frequency-resolved optical gating," Opt. Express 27, 2112-2124 (2019)
[9] H. Liu, A. Hsu, C. Chen, and S. Yang, "Spectrally sampled second-harmonic interferometric autocorrelation for 3.5 fs pulse measurement," in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America, 2018), paper JTh2A.170.
[10] Ming-Sung Chao, Hsiang-Nan Cheng, Bo-Jyun Fong, Zhi-Ming Hsieh, Wei-Wei Hsiang, and Shang-Da Yang, "High-sensitivity ultrashort mid-infrared pulse characterization by modified interferometric field autocorrelation," Opt. Lett. 40, 902-905 (2015)
[11] Chen-Shao Hsu, Yu-Hsien Lee, Atsushi Yabushita, Takayoshi Kobayashi, and Shang-Da Yang, "Spectral phase retrieval of 8 fs optical pulses at 600 nm by using a collinear autocorrelator with 300-μm-thick lithium triborate crystals," Opt. Lett. 36, 2041-2043 (2011)
[12] Chen-Shao Hsu, “Ultrashort Optical Pulses Measurements by Modified Interferometric Field Autocorrelation,” PhD thesis, 2011. https://etd.lib.nctu.edu.tw/cgi-bin/gs32/hugsweb.cgi?o=dnthucdr&s=id=%22GH029566508%22.&searchmode=basic
[13] Steffen Hädrich, Marco Kienel, Michael Müller, Arno Klenke, Jan Rothhardt, Robert Klas, Thomas Gottschall, Tino Eidam, András Drozdy, Péter Jójárt, Zoltán Várallyay, Eric Cormier, Károly Osvay, Andreas Tünnermann, and Jens Limpert, "Energetic sub-2-cycle laser with 216 W average power," Opt. Lett. 41, 4332-4335 (2016)
[14] Andrius Baltuška, Takao Fuji, and Takayoshi Kobayashi, "Visible pulse compression to 4 fs by optical parametric amplification and programmable dispersion control," Opt. Lett. 27, 306-308 (2002)
[15] T. J. Hammond, D. M. Villeneuve, and P. B. Corkum, "Producing and controlling half-cycle near-infrared electric-field transients," Optica 4, 826-830 (2017)
[16] Chih-Hsuan Lu, Tobias Witting, Anton Husakou, Marc J.J. Vrakking, A. H. Kung, and Federico J. Furch, "Sub-4 fs laser pulses at high average power and high repetition rate from an all-solid-state setup," Opt. Express 26, 8941-8956 (2018)
[17] Tsz Chun Wong, Justin Ratner, Vikrant Chauhan, Jacob Cohen, Peter M. Vaughan, Lina Xu, Antonio Consoli, and Rick Trebino, "Simultaneously measuring two ultrashort laser pulses on a single-shot using double-blind frequency-resolved optical gating," J. Opt. Soc. Am. B 29, 1237-1244 (2012)
[18] Alexander Guggenmos, Ayman Akil, Marcus Ossiander, Martin Schäffer, Abdallah Mohammed Azzeer, Gerhard Boehm, Markus-Christian Amann, Reinhard Kienberger, Martin Schultze, and Ulf Kleineberg, "Attosecond photoelectron streaking with enhanced energy resolution for small-bandgap materials," Opt. Lett. 41, 3714-3717 (2016)
[19] Hyyti, J., Escoto, E., & Steinmeyer, G. (2017). Pulse retrieval algorithm for interferometric frequency-resolved optical gating based on differential evolution. Review of Scientific Instruments, 88(10), 103102.