研究生: |
王子峯 Wang, Tzu-Fong |
---|---|
論文名稱: |
整合繞射式光學元件於多波長共焦干涉儀之研發 Research and Development of Multi-Wavelength Confocal Interferometer by Using Diffractive Optical Element |
指導教授: |
王偉中
Wang, Wei-Chung |
口試委員: |
陳政寰
Chen, Cheng-Huan 蔡朝旭 Tsai, Chao-Hsu |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2018 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 140 |
中文關鍵詞: | 繞射式光學元件 、彩色共焦干涉 、表面形貌量測 |
外文關鍵詞: | Diffractive Optical Element, Chromatic Confocal Interferometry, Profile Measurment |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究結合白光掃描干涉儀(White Light Scanning Interferometer, WLSI)與彩色共焦顯微儀(Chromatic Confocal Microscope, CCM)建構一套多波長共焦干涉儀(Multi-Wavelength Confocal Interferometer, MWCI),其中利用繞射式光學元件(Diffractive Optical Element, DOE)的軸向色散特性,可以用於表面形貌的即時量測。
本研究架設之MWCI是以Linnik干涉儀之準直光模組為基礎,使用的DOE為焦距300mm、設計波長550nm並搭配20X顯微物鏡,再以單點式光譜儀擷取彩色共焦干涉資訊。本研究比較了DOE理論與實驗上的色散性能差異,並驗證了DOE在設計波長處有最佳繞射效率。本研究亦針對分光鏡及共焦濾波器等光學元件組合以及高通濾波器和峰值判斷法等軟體進行最佳化設計,透過自行編寫的軟體分析並分別比較兩種分光鏡、六種共焦濾波器組合及兩種高通濾波器之干涉訊號和光強差異,得到最佳化系統架構及形貌演算法。
本研究透過垂直掃描反射鏡建構出高度與波長校正曲線,三次重複掃描結果顯示各高度之波長差異皆低於0.5%,證明了所架設之MWCI具備高穩定性與高重現性。另外本研究所架設之MWCI具即時性、高精度且非破壞性等優點,垂直解析度為0.4μm,水平解析度為36.5μm,量測深度為170μm。
In this thesis, a multi-wavelength confocal interferometer (MWCI) was developed by integrating the white light scanning interferometry (WLSI) and chromatic confocal microscopy (CCM). By using the axial dispersion characteristics of the diffractive optical element (DOE), MWCI can be used to determine the real time surface profile.
The MWCI developed in this thesis is based on the collimated light module of Linnik-type interferometer, and the interference signals were captured by a single-point measurement spectrometer. The adopted DOE was designed with a focal length of 300mm and a design wavelength of 550nm. By comparing the difference in dispersion performance between theory and experiment, it was proved that the adopted DOE has the best diffraction efficiency at the design wavelength. Moreover, the optimization of both beam splitter and confocal filter as well as software such as high-pass filter and peak-determination methods were analyzed. Optimum system structure and topographical algorithms were obtained by comparing the interference signals and light intensities of two beamsplitters, six confocal filter combinations and two high-pass filters by using self-developed software.
The height-wavelength calibration curve was obtained by using the vertical scanning reflecting mirror. The wavelength difference of each step height was less than 0.5% in three repeated scans; as a result, it was found that the MWCI adopted in this thesis has high stability. The advantages of the MWCI are real-time, high precision and non-destructive. In addition,
the vertical and horizontal resolutions are respectively 0.4μm and 36.5μm, and the measurement range is 170μm.
[1] M. H. Shen, C. H. Hwang, W. C. Wang, Y. H. Chen and Y. H. Lin, “A New Optical System for Measuring Shape, In-Plane and Out-of-Plane Deformations and Deformation Gradient of Microstructures,” IUTAM Symposium on Advances of Optical Methods in Experimental Mechanics, Paper No. A24, 11 pages, 2012.
[2] M. H. Shen, C. H. Hwang, W. C. Wang, “White-Light Interferometer Micro-profile Measurement Based on Higher Steps Phase-Shifting Algorithm,” The 7th International Workshop on Advanced Optical Imaging and Metrology, pp. 341-344, 2013.
[3] M. H. Shen, C. H. Hwang and W. C. Wang, “Center Wavelength Measurement Based on Higher Steps Phase-Shifting Algorithms in White-Light Scanning Interferometry,” The 37th National Conference on Theoretical and Applied Mechanics (37th-NCTAM) and the 1st International Conference on Mechanics (1st-ICM), Paper No. 100, 9 pages, 2013.
[4] M. H. Shen, C. H. Hwang and W. C. Wang, “Multi-Step Phase-Shifting Functions in White-Light Interferometer,”..16th International Conference on Experimental Mechanics (ICEM16), Paper No. Y94114I7, 2 pages, 2014.
[5] M. H. Shen, C. H. Hwang and W. C. Wang, “Using Higher Steps Phase-Shifting Algorithms and Linear Least-Squares Fitting in White-Light Scanning Interferometry,” Optics and Lasers in Engineering, Vol. 66, pp. 165-173, 2015.
[6] M. Born and E. Wolf, “Principles of Optics (6th Edition),” Oxford, Pergamon, 1980.
[7] B. Bhushan, J. C. Wyant and C. Koliopoulos, “Measurement of Surface Topography of Magnetic Tapes by Mirau Interferometry,” Applied Optics, Vol. 24, pp. 1489-1997, 1985.
[8] G. S. Kino and S. S. C. Chim, “Mirau Correlation Microscope,” Applied Optics, Vol. 29, pp. 3775-3783, 1990.
[9] J. C. Wyant and J. Schmit, “Large Field of View, High Spatial Resolution, Surface Measurements,” International Journal of Machine Tools and Manufacture, Vol. 38, pp. 691-698, 1998.
[10] J. C. Wyant, “White Light Interferometry,” Proc. SPIE, Vol. 4737, pp. 98-107, 2002.
[11] M. Roy, C. J. R. Sheppard and P. Hariharan, “Low-Coherence Interference Microscopy Using a Ferro-Electric Liquid Crystal Phase-Modulator,” Optics Express, Vol. 12, pp. 2512-2516, 2004.
[12] S. K. Debnath and M. P. Kothiyal, “Optical Profiler Based on Spectrally Resolved White Light Interferometry,” Optical Engineering, Vol. 44, pp. 013606: 1-5, 2005.
[13] S. K. Debnath, M. P. Kothiyal and S. W. Kim, “Evaluation of Spectral Phase in Spectrally Resolved White-Light Interferometry: Comparative Study of Single-Frame Techniques,” Optics and Lasers in Engineering, Vol. 47, pp. 1125-30, 2009.
[14] P. Pavlicek and G. Hausler, “White-Light Interferometer with Dispersion: An Accurate Fiber-Optic Sensor for the Measurement of Distance,” Applied Optics, Vol. 44, pp. 2978-83, 2005.
[15] D. Reolon, M. Jacquot, I. Verrier, G. Brun and C. Veillas, “Broadband Supercontinuum Interferometer for High-Resolution Profilometry,” Optics Express, Vol. 14, pp. 128-137, 2006.
[16] J. Niehues and P. Lehmann, “Dual-Wavelength Vertical Scanning Low-Coherence Interference Microscopy,” Proc. SPIE, Vol. 6616, pp. 661606-1‒661606-10, 2007.
[17] M. Li, C. Quan and C. J. Tay, “Continuous Wavelet Transform for Micro-Component Profile Measurement Using Vertical Scanning Interferometry,” Optics and Laser Technology, Vol. 40, pp. 920-929, 2008.
[18] Z. Saraç, “Analysis of White-Light Interferograms by Using Stockwell Transform,” Optics and Lasers in Engineering, Vol. 46, pp. 823-828, 2008.
[19] X. Hu, S. Deng and W. Wang, “Long-Working-Distance Linnik Microscopic Interferometry for Measuring the Surface Profile of Microstructures,” Journal of Vacuum Science and Technology B, Vol. 27, pp. 1403-1407, 2009
[20] J. Niehues, P. Lehmann and W. Xie, “Low Coherent Linnik Interferometer Optimized for Use in Nano-Measuring Machines,” Measurement Science and Technology, Vol. 23, pp. 125002-1‒125002-9, 2012.
[21] U. P. Kumar, W. Haifeng, N. K. Mohan and M. Kothiyal, “White Light Interferometry for Surface Profiling with a Colour CCD,” Optics and Lasers in Engineering, Vol. 50, pp. 1084-1088, 2012.
[22] A. M. Tapilouw, L. C. Chen, Y. J. Jen, S. T. Lin and S. L. Yeh, “Orthogonal Polarization Mirau Interferometer Using Reflective-Type Waveplate,” Optics Letters, vol. 38, pp. 2502-2504, 2013.
[23] S. K. Nayar and Y. Nakagawa, “Shape from Focus,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 16, pp. 824-831, 1994.
[24] M. Subbarao and T. Choi, “Accurate Recovery of Three-Dimensional Shape from Image Focus,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 17, pp. 266-274, 1995.
[25] S. K. Nayar, M. Watanabe and M. Noguchi, “Real-Time Focus Range Sensor,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 18, pp. 1186-1198, 1996.
[26] S. L. Dobson, P. C. Sun and Y. Fainman, “Diffractive Lenses for Chromatic Confocal Imaging”, Applied Optics, Vol. 36, pp. 4744-4748, 1997.
[27] T. S. Choi and J. Yun, “Three-Dimensional Shape Recovery from the Focused-Image Surface,” Optical Engineering, Vol. 39, pp.1321-1326, 2000.
[28] J. Kautsky, J. Flusser, B. Zitová and S. Šimberová, “A New Wavelet-Based Measure of Image Focus,” Pattern Recognition Letters, Vol. 23, pp. 1785-1794, 2002.
[29] M. B. Ahmad and T. S. Choi, “A Heuristic Approach for Finding Best Focused Shape,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 15, pp. 566-574, 2005.
[30] E. Papastathopoulos, K. Kömer and W. Osten, “Chromatic Confocal Spectral Interferometry”, Applied Optics, Vol. 45, pp. 8244-8252, 2006.
[31] E. Papastathopoulos, K. Kömer and W. Osten, “Chromatic Confocal Spectral Interferometry with Wavelet Analysis”, Proc. SPIE, Vol. 6189, pp. 618913-1 2006.
[32] H. Xie, W. Rong and L. Sun, “Construction and Evaluation of a Wavelet-Based Focus Measure for Microscopy Imaging,” Microscopy Research and Technique, Vol. 70, pp. 987-995, 2007.
[33] S. Y. Lee, Y. Kumar, J. M. Cho, S. W. Lee and S. W. Kim, “Enhanced Autofocus Algorithm Using Robust Focus Measure and Fuzzy Reasoning,” IEEE Transactions on Circuits and Systems for Video Technology, Vol. 18, pp.1237-1246, 2008.
[34] M. T. Mahmood, S. O. Shim and T. S. Choi, “Shape from Focus Using Principal Component Analysis in Discrete Wavelet Transform,” Optical Engineering, Vol. 48, pp. 057203-1‒ 057203-9, 2009.
[35] B. S. Chun, K. Kim and D. Gweon, “Three-Dimensional Surface Profile Measurement Using a Beam Scanning Chromatic Confocal Microscope,” Journal of Applied Physics, Vol. 80, pp. 073706-1 ‒073706-7, 2009.
[36] S. O. Shim and T. S. Choi, “A Novel Iterative Shape from Focus Algorithm Based on Combinatorial Optimization,” Pattern Recognition, Vol. 43, pp. 3338-3347, 2010.
[37] J. Garzón, D. Duque, A. Alean, M. Toledo, J. Meneses and T. Gharbi, “Diffractive Elements Performance in Chromatic Confocal Microscopy,” Journal of Physics, Vol. 274, 2011.
[38] R. Minhas, A. A. Mohammed and Q. M. J. Wu, “Shape from Focus Using Fast Discrete Curvelet Transform,” Pattern Recognition, Vol. 44, pp. 839-853, 2011.
[39] D. Luo, C. Kuang and X. Liu, “Fiber-Based Chromatic Confocal Microscope with Gaussian Fitting Method,” Optics and Laser Technology, Vol. 44, pp. 788-793, 2012.
[40] M. Vaishakh, “Optical Sectioning in Reciprocal Fiber-Optic Based Chromatic Confocal Microscope,” Optik, Vol. 123, pp. 1450-1452, 2012.
[41] T. Kim, S. H. Kim, D. Do, H. Yoo and D. Gweon, “Chromatic Confocal Microscopy with a Novel Wavelength Detection Method Using Transmittance,” Optics Express, Vol. 21, pp. 6286-6294, 2013.
[42] U. Minoni, G. Manili, S. Bettoni, E. Varrenti, D. Modotto and C. D. Angelis, “Chromatic Confocal Setup for Displacement Measurement Using a Supercontinuum Light Source” Optics and Laser Technology, Vol. 49, pp. 91-94, 2013.
[43] D. Duque and J. Garzón, “Effects of Both Diffractive Element and Fiber Optic Based Detector in a Chromatic Confocal System,” Optics and Laser Technology, Vol. 50, pp. 182-189, 2013
[44] E. H. Nadim, N. Hichem1, A. Nabil, D. Mohamed and G. Olivier, “Comparison of Tactile and Chromatic Confocal Measurements of Aspherical Lenses for Form Metrology,” International Journal of Precision Engineering and Manufacturingy, Vol. 15, pp. 821-829, 2014.
[45] D. R. Lee, Y. D. Kim, D. G. Gweon and H. Yoo, “High Speed 3D Surface Profile without Axial Scanning: Dual-Detection Confocal Reflectance Microscopy,” Measurement Science and Technology, Vol. 25, pp. 125403-1‒125403-6, 2014.
[46] N. Koukourakis, M. Finkeldey, M. Stürmer, C. Leithold, N. C. Gerhardt, M. R. Hofmann, U. Wallrabe, J. W. Czarske and A. Fischer, “Axial Scanning in Confocal Microscopy Employing Adaptive Lenses (CAL),” Optics Express, Vol. 22, pp. 6025-6039, 2014.
[47] 沈明興, “自動對焦麥克森白光干涉儀之系統研製” ,國立成功大學機械工程學系碩士論文,2007。
[48] 沈明興, “應用多波長共焦干涉系統於表面輪廓之研究” ,國立清華大學動力機械工程學系博士論文,2015。
[49] P. D. Groot, “Principles of Interference Microscopy for the Measurement of Surface Topography,” Advances in Optics and Photonics, Vol. 7, pp. 1-65, 2015.
[50] 李浩瑋, “結合數位微鏡晶片之全域式彩色共焦顯微量測系統研發” ,國立臺北科技大學自動化科技研究所碩士論文, 2011。
[51] 陳奕璇, “彩色共焦干涉式顯微三維形貌量測方法與探頭之研發” ,國立臺北科技大學自動化科技研究所碩士論文, 2012。
[52] https://zh.wikipedia.org/wiki/斯涅爾定律
[53] https://zh.wikipedia.org/wiki/光學史
[54] https://zh.wikipedia.org/wiki/色散_(光學)
[55] https://baike.baidu.com/item/光的色散
[56] J. W. Goodman, “Introduction to Fourier Optics (2nd Edition),” McGraw Hill, New York, 1968.
[57] 楊朝翔, “多波長繞射光學元件的研究與設計” ,國立臺北科技大學光電工程系碩士論文,2005。
[58] 曾士芫, “以全像微影方法製作一維週期性結構” ,國立交通大學光電工程研究所碩士論文,2007。
[59] H. P. Herzig, “Micro-Optics Elements, Systems and Application,” CRC Press, Switzerland, 1997.
[60] 金國潘、嚴瑛白、鄔敏賢, “二元光學” ,國防工業出版社,1998。
[61] J. Garzón, A. Plata, J. Meneses, G. M. Tribillon and T. Gharbi, “Chromatic Confocal Method for Determination of the Refractive Index and Thickness,” Journal of Physics, Vol. 274, 2011
[62] S. Thiele, A. Seifert, and A. M. Herkommer, “Wave-Optical Design of a Combined Refractive-Diffractive Varifocal Lens,” Optics Express, Vol. 22, pp. 13343-13350, 2014.
[63] http://www.doeopticalworkshop.com.tw/index.htm
[64] L. C. Chen, C. N. Chen, and Y. W. Chang, “Development of a New Multi-Wavelength Confocal Surface Profilometer for On-Line Automatic Optical Inspection (AOI),” Asian Symposium for Precision Engineering and Nanotechnology, 2009.
[65] H. J. Tiziani, R. Achi, and R. N. Kramer, “Chromatic Confocal Microscopy with Microlenses,” Journal of Modern Optics, Vol. 43, pp. 155-163, 1996.
[66] C. J. R. Sheppard and X. Q. Mao, “Confocal Microscopes with Slit Apertures,” Journal of Modern Optical, Vol. 35, pp. 1169-1185, 1988.
[67] G. Molesini, G. Pedrini, P. Poggi and F. Quercioli, “Focus-wavelenght encoded optical profilometer,” Optics Communications, Vol. 49, pp. 229-233, 1984.
[68] G. J. Tearney, R. H. Webb and B. E. Bouma, “Spectrally Ecoded Cnfocal Mcroscopy,” Optics Letters, Vol. 23, pp. 1152-1154 , 1998.
[69] M. Takeda, H. Ina and S. Kobayashi, “Fourier-Transform Method of Fringe-Pattern Analysis for Computer-Based Topography and Interferometry,” Journal of the Optical Society, Vol. 72, pp. 156-160, 1982.
[70] M. Takeda and M. Kazuhiro, “Fourier Transform Profilometry for the Automatic Measurement of 3-D Object Shapes,” Applied Optics, Vol. 22, pp. 3977-82, 1983.
[71] C. Direkoglu and M. S. Nixon, “Image-Based Multiscale Shape Description Using Gaussian Filter,” Proceedings. Indian Conference on Computer Vision, Graphics & Image Processing, pp. 673-678, 2008.
[72] http://m.itboth.com/d/V73eIb/matlab
[73] S. Butterworth, “On the Theory of Filter Amplifiers,” Experimental Wireless and the Wireless Engineer, Vol. 7, pp. 536-541, 1930.
[74] Website: https://www.mathworks.com/products/matlab.html
[75] http://www.otophotonics.com/productshow_48.html
[76] http://www.tfo.com.tw/products_detail.php?pid=5
[77] http://www.unice-eo.com/product/optomechanics/auto-motion-stages/utility-motorized-stages---loading-10kgs/08umt-50m
[78] http://www.unice-eo.com/product/optomechanics/auto-motion-stages/drivers-and-controllers/08tmc-2u
[79] https://www.thorlabs.de/thorproduct.cfm?partnumber=BP145B1
[80] https://www.nikoninstruments.com/Products/Optics
[81] http://www.doeopticalworkshop.com.tw/
[82] http://www.onset-eo.com/index.php
[83] 丁勝懋, “雷射工程導論” ,中央圖書出版社,1995。
[84] Z. Wang, Y. Chen and C. Du, “Measurement and Analysis of Diffraction Efficiency of Fresnel Microlens Arrays,” Acta Optica Sinica, Vol. 18, pp. 41-48, 1998.
[85] https://svi.nl/AiryDisk
[86] T. Boettcher, W. Lyda, M. Gronle, F. Mauch and W. Osten, “Robust Signal Evaluation for Chromatic Confocal Spectral Interferometry,” Proceedings. SPIE, Vol. 87880, pp. 1-8, 2013.
[87] A. S. Wang, B. Xie and Z. W. Liu, “Design of Measurement System of 3D Surface Profile Based on Chromatic Confocal Technology,” Proceedings of SPIE, Vol. 1061618, pp.1-6, 2018.
[88] 余眃庭, “繞射式彩色共焦顯微儀之探討” ,國立清華大學動力機械工程學系碩士論文,2018。