簡易檢索 / 詳目顯示

研究生: 吳介凱
Wu, Jie-Kai
論文名稱: 果蠅長期記憶需要三組蕈狀體輸出神經細胞依序產生新蛋白質
Long-term memory requires sequential protein synthesis in three subsets of mushroom body output neurons in Drosophila
指導教授: 江安世
Chiang, Ann-Shyn
口試委員: 傅在峰
Fu, Tsai-Feng
吳嘉霖
Wu, Chia-Lin
林書葦
Lin, Suewei
周雅惠
Chou, Ya-Hui
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 51
中文關鍵詞: 長期記憶果蠅蕈狀體輸出神經固化
外文關鍵詞: mushroom, ORB, sequential
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 從哺乳類至果蠅,固化長期記憶皆需要腦中新蛋白質合成來穩固學習引發的突觸改變。
    利用黑腹果蠅的嗅覺關聯式學習可以透過氣味與電擊在腦中蕈狀體內的連結來形成多種類型的嗅覺記憶:包含短期、中期與長期記憶。然而,不管是在果蠅還是人類腦中,如何將短期記憶固化為長期記憶一直是個未解但是重要的課題。在本篇研究中,我們利用低溫敏感性的蓖麻毒素阻斷果蠅腦中特定神經細胞的蛋白質新生,藉此策略篩選共一百六十三株,約二十一種蕈狀體輸出神經細胞候選株,鑑定出三種特定類型的蕈狀體輸出神經細胞需要依序生成新蛋白質來固化長期記憶。分別在三種蕈狀體輸出神經中抑制核糖核酸結合ORB蛋白質(哺乳類的CPEB蛋白質異構體)的表現量,皆會影響果蠅的長期記憶。映證此三種蕈狀體輸出神經細胞需要新蛋白質,而新蛋白質的生成受到ORB蛋白質在突觸後的局部轉譯調控。此外,提取果蠅腦中的長期記憶也需要這三種蕈狀體輸出神經細胞的神經傳導物質,說明此三種神經細胞產生新蛋白質進而固化長期記憶,並參與長期記憶提取的神經迴路。綜合以上,本篇研究提出果蠅腦中蕈狀體輸出神經細胞的長期記憶固化模型:ORB蛋白質依序在蕈狀體輸出神經細胞調控突觸後局部新蛋白質生成,藉此將暫時的短期記憶神經活性固化於少數蕈狀體輸出神經細胞的後突觸,最終形成長期記憶。


    Creating long-term memory (LTM) requires new protein synthesis to stabilize learning-induced synaptic changes in the brain. In the fruit fly, Drosophila melanogaster, aversive olfactory learning forms several phases of labile memory to associate an odor with coincident punishment in the mushroom body (MB). It remains unclear how the brain consolidates early labile memory into LTM. Here, we survey 163 Gal4 lines containing almost all 21 distinct types of MB output neurons (MBONs) and show that sequential synthesis of learning-induced proteins occurs at three types of MBONs. Downregulation of oo18 RNA-binding proteins (ORBs) in any of these MBONs impaired LTM. And, neurotransmission outputs from these MBONs are all required during LTM retrieval. Together, these results suggest an LTM consolidation model in which transient neural activities of early labile memory in the MB are consolidated into stable LTM at a few postsynaptic MBONs through sequential ORB-regulated local protein synthesis.

    1. Introduction--------------------------------------------------------------------6 2. Results-------------------------------------------------------------------------10 3. Discussion---------------------------------------------------------------------16 4. Material and Method---------------------------------------------------------19 5. Reference----------------------------------------------------------------------22 6. Figure and Table--------------------------------------------------------------31

    1. Margulies C, Tully T, Dubnau J (2005) Deconstructing memory in Drosophila. Curr Biol 15(17):R700-713.
    2. Lechner HA, Squire LR, Byrne JH (1999) 100 years of consolidation--remembering Müller and Pilzecker. Learn Mem 6(2):77-87.
    3. Dudai Y (2004) The neurobiology of consolidations, or, how stable is the engram? Annu Rev Psychol 55:51-86.
    4. Frankland PW, Bontempi B (2005) The organization of recent and remote memories. Nat Rev Neurosci 6(2):119-130.
    5. Dudai Y (2012) The restless engram: consolidations never end. Annu Rev Neurosci 35:227-247.
    6. Dubnau J, Chiang AS (2013) Systems memory consolidation in Drosophila. Curr Opin Neurobiol 23(1):84-91.
    7. Korte M, Schmitz D (2016) Cellular and system biology of memory: timing, molecules, and beyond. Physiological Reviews 96(2):647-693.
    8. Josselyn SA, Kohler S, Frankland PW (2015) Finding the engram. Nat Rev Neurosci 16(9):521-534.
    9. Tonegawa S, Liu X, Ramirez S, Redondo R (2015) Memory engram cells have come of age. Neuron 87(5):918-931.
    10. Carew TJ, Pinsker HM, Kandel ER (1972) Long-term habituation of a defensive withdrawal reflex in Aplysia. Science 175(4020):451-454.
    11. Tully T, Preat T, Boynton SC, Del Vecchio M (1994) Genetic dissection of consolidated memory in Drosophila. Cell 79(1):35-47.
    12. Scharf MT, et al. (2002) Protein synthesis is required for the enhancement of long-term potentiation and long-term memory by spaced training. Journal of Neurophysiology 87(6):2770-2777.
    13. Sutton MA, Ide J, Masters SE, Carew TJ (2002) Interaction between amount and pattern of training in the induction of intermediate- and long-term memory for sensitization in Aplysia. Learn Mem 9(1):29-40.
    14. Cepeda NJ, Pashler H, Vul E, Wixted JT, Rohrer D (2006) Distributed practice in verbal recall tasks: a review and quantitative synthesis. Psychol Bull 132(3):354-380.
    15. Tully T, Quinn WG (1985) Classical conditioning and retention in normal and mutant Drosophila melanogaster. J Comp Physiol A 157(2):263-277.
    16. Kandel ER (2012) The molecular biology of memory: cAMP, PKA, CRE, CREB-1, CREB-2, and CPEB. Mol Brain 5:14.
    17. Chen CC, et al. (2012) Visualizing long-term memory formation in two neurons of the Drosophila brain. Science 335(6069):678-685.
    18. Pai TP, et al. (2013) Drosophila ORB protein in two mushroom body output neurons is necessary for long-term memory formation. Proc Natl Acad Sci USA 110(19):7898-7903.
    19. Kruttner S, et al. (2015) Synaptic Orb2A bridges memory acquisition and late memory consolidation in Drosophila. Cell Rep 11(12):1953-1965.
    20. Li L, et al. (2016) A putative biochemical engram of long-term memory. Curr Biol 26(23):3143-3156.
    21. Stepien BK, et al. (2016) RNA-binding profiles of Drosophila CPEB proteins Orb and Orb2. Proc Natl Acad Sci U S A 113(45):E7030-E7038.
    22. Bourtchuladze R, et al. (1994) Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79(1):59-68.
    23. Yin JC, et al. (1994) Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell 79(1):49-58.
    24. Alarcon JM, et al. (2004) Selective modulation of some forms of schaffer collateral-CA1 synaptic plasticity in mice with a disruption of the CPEB-1 gene. Learn Mem 11(3):318-327.
    25. Miniaci MC, et al. (2008) Sustained CPEB-dependent local protein synthesis is required to stabilize synaptic growth for persistence of long-term facilitation in Aplysia. Neuron 59(6):1024-1036.
    26. Si K, Choi YB, White-Grindley E, Majumdar A, Kandel ER (2010) Aplysia CPEB can form prion-like multimers in sensory neurons that contribute to long-term facilitation. Cell 140(3):421-435.
    27. Lin HH, Lai JS, Chin AL, Chen YC, Chiang AS (2007) A map of olfactory representation in the Drosophila mushroom body. Cell 128(6):1205-1217.
    28. Honegger KS, Campbell RA, Turner GC (2011) Cellular-resolution population imaging reveals robust sparse coding in the Drosophila mushroom body. J Neurosci 31(33):11772-11785.
    29. Aso Y, et al. (2014) The neuronal architecture of the mushroom body provides a logic for associative learning. Elife 3:e04577.
    30. Claridge-Chang A, et al. (2009) Writing memories with light-addressable reinforcement circuitry. Cell 139(2):405-415.
    31. Aso Y, et al. (2010) Specific dopaminergic neurons for the formation of labile aversive memory. Curr Biol 20(16):1445-1451.
    32. Hige T, Aso Y, Modi MN, Rubin GM, Turner GC (2015) Heterosynaptic plasticity underlies aversive olfactory learning in Drosophila. Neuron 88(5):985-998.
    33. Aso Y, Rubin GM (2016) Dopaminergic neurons write and update memories with cell-type-specific rules. Elife 5:e16135.
    34. Cohn R, Morantte I, Ruta V (2015) Coordinated and compartmentalized neuromodulation shapes sensory processing in Drosophila. Cell 163(7):1742-1755.
    35. Owald D, et al. (2015) Activity of defined mushroom body output neurons underlies learned olfactory behavior in Drosophila. Neuron 86(2):417-427.
    36. Sejourne J, et al. (2011) Mushroom body efferent neurons responsible for aversive olfactory memory retrieval in Drosophila. Nat Neurosci 14(7):903-910.
    37. Aso Y, et al. (2014) Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila. Elife 3:e04580.
    38. Endo Y, Mitsui K, Motizuki M, Tsurugi K (1987) The mechanism of action of ricin and related toxic lectins on eukaryotic ribosomes. The site and the characteristics of the modification in 28 S ribosomal RNA caused by the toxins. J Biol Chem 262(12):5908-5912.
    39. Endo Y, Tsurugi K (1987) RNA N-glycosidase activity of ricin A-chain. Mechanism of action of the toxic lectin ricin on eukaryotic ribosomes. J Biol Chem 262(17):8128-8130.
    40. Moffat KG, Gould JH, Smith HK, O'Kane CJ (1992) Inducible cell ablation in Drosophila by cold-sensitive ricin A chain. Development 114(3):681-687.
    41. Shih HW, et al. (2015) Parallel circuits control temperature preference in Drosophila during ageing. Nat Commun 6:7775.
    42. Ryan TJ, Roy DS, Pignatelli M, Arons A, Tonegawa S (2015) Engram cells retain memory under retrograde amnesia. Science 348(6238):1007-1013.
    43. Kitamoto T (2001) Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. J Neurobiol 47(2):81-92.
    44. Feinberg EH, et al. (2008) GFP reconstitution across synaptic partners (GRASP) defines cell contacts and synapses in living nervous systems. Neuron 57(3):353-363.
    45. Crocker A, Guan XJ, Murphy CT, Murthy M (2016) Cell-type-specific transcriptome analysis in the Drosophila mushroom body reveals memory-related changes in gene expression. Cell Rep 15(7):1580-1596.
    46. Qin H, et al. (2012) Gamma neurons mediate dopaminergic input during aversive olfactory memory formation in Drosophila. Curr Biol 22(7):608-614.
    47. Blum AL, Li W, Cressy M, Dubnau J (2009) Short- and long-term memory in Drosophila require cAMP signaling in distinct neuron types. Curr Biol 19(16):1341-1350.
    48. Yu D, Akalal DB, Davis RL (2006) Drosophila alpha/beta mushroom body neurons form a branch-specific, long-term cellular memory trace after spaced olfactory conditioning. Neuron 52(5):845-855.
    49. Malik BR, Gillespie JM, Hodge JJ (2013) CASK and CaMKII function in the mushroom body alpha'/beta' neurons during Drosophila memory formation. Front Neural Circuits 7:52.
    50. Ichinose T, et al. (2015) Reward signal in a recurrent circuit drives appetitive long-term memory formation. Elife 4:e10719.
    51. Xia S, Chiang AS (2009) NMDA Receptors in Drosophila. Biology of the NMDA Receptor, Frontiers in Neuroscience, ed Van Dongen AM Boca Raton (FL).
    52. Wu CL, et al. (2007) Specific requirement of NMDA receptors for long-term memory consolidation in Drosophila ellipsoid body. Nat Neurosci 10(12):1578-1586.
    53. Isabel G, Pascual A, Preat T (2004) Exclusive consolidated memory phases in Drosophila. Science 304(5673):1024-1027.
    54. Janak PH, Tye KM (2015) From circuits to behaviour in the amygdala. Nature 517(7534):284-292.
    55. Pascual A, Preat T (2001) Localization of long-term memory within the Drosophila mushroom body. Science 294(5544):1115-1117.
    56. Placais PY, Trannoy S, Friedrich AB, Tanimoto H, Preat T (2013) Two pairs of mushroom body efferent neurons are required for appetitive long-term memory retrieval in Drosophila. Cell Rep 5(3):769-780.
    57. Yamagata N, Hiroi M, Kondo S, Abe A, Tanimoto H (2016) Suppression of dopamine neurons mediates reward. PLoS Biol 14(12):e1002586.
    58. Yarali A, et al. (2008) ‘Pain relief’ learning in fruit flies. Animal Behaviour 76(4):1173-1185.
    59. Gerber B, et al. (2014) Pain-relief learning in flies, rats, and man: basic research and applied perspectives. Learn Mem 21(4):232-252.
    60. Ueoka Y, Hiroi M, Abe T, Tabata T (2017) Suppression of a single pair of mushroom body output neurons in Drosophila triggers aversive associations. FEBS Open Bio. doi: 10.1002/2211-5463.12203.
    61. Lewis LP, et al. (2015) A higher brain circuit for immediate integration of conflicting sensory information in Drosophila. Curr Biol 25(17):2203-2214.
    62. Yamagata N, et al. (2015) Distinct dopamine neurons mediate reward signals for short- and long-term memories. Proc Natl Acad Sci U S A 112(2):578-583.
    63. Huetteroth W, et al. (2015) Sweet taste and nutrient value subdivide rewarding dopaminergic neurons in Drosophila. Curr Biol 25(6):751-758.
    64. Liu Q, et al. (2016) Gap junction networks in mushroom bodies participate in visual learning and memory in Drosophila. Elife 5:e13238.
    65. Yang CH, et al. (2016) Additive expression of consolidated memory through Drosophila mushroom body subsets. PLoS Genet 12(5):e1006061.
    66. Krashes MJ, Keene AC, Leung B, Armstrong JD, Waddell S (2007) Sequential use of mushroom body neuron subsets during Drosophila odor memory processing. Neuron 53(1):103-115.
    67. Wang Y, Mamiya A, Chiang AS, Zhong Y (2008) Imaging of an early memory trace in the Drosophila mushroom body. J Neurosci 28(17):4368-4376.
    68. Owald D, Waddell S (2015) Olfactory learning skews mushroom body output pathways to steer behavioral choice in Drosophila. Curr Opin Neurobiol 35:178-184.
    69. Tonegawa S, Pignatelli M, Roy DS, Ryan TJ (2015) Memory engram storage and retrieval. Curr Opin Neurobiol 35:101-109.
    70. Hige T, Aso Y, Rubin GM, Turner GC (2015) Plasticity-driven individualization of olfactory coding in mushroom body output neurons. Nature 526(7572):258-262.

    QR CODE