簡易檢索 / 詳目顯示

研究生: 王德昌
論文名稱: 摻鉺光纖雷射波長切換研究
Study of Wavelength Switchable Erbium-doped Fiber Laser
指導教授: 王立康
口試委員: 呂海涵
廖顯奎
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 62
中文關鍵詞: 波長調變長週期光纖光柵
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   光纖雷射在應用上經常使用到環形的共振腔迴路,在這裡我們使用到共振腔外加布拉格光柵(Fiber Bragg Grating,FBG)或薄膜濾波器(add/drop filter)來做為主要選取波長的依據,藉由兩種不同的實驗設計方法,來控制所輸出的訊號波長與調變。
      一開始我們所使用兩種不同波長的布拉格光柵搭配上共振腔的應用在C-band波長的範圍下輸出我們要的光纖雷射,會選用C-band波長範圍主要原因為在傳統C-band的範圍內不容易產生lasing。第一種的控制方式為使用雙幫浦雷射,由各別控制其供給的能量,達到控制輸出的波長、功率,藉此達到波長選擇的效果。
      再來我們將使用另外一種方式來做為波長選取的方法,用薄膜濾波器達到波長選擇的效果,然後將長週期光纖光柵(Long-Period Fiber Grating,LPFG)彎曲,在不同曲度下各波長的損耗也不同,通過此特性來調變輸出的雷射訊號。
      兩種方式各有其優點和缺陷,第一種所能調整的範圍較廣,而且可輕易調整輸出的光功率;第二個實驗設計上調變方式較為方便,且只需要一台幫浦雷射即可,兩種實驗成本不高的關係,調變方式皆利於各種學術或工程等應用。


    論文摘要 第一章 論文簡介 1.1研究背景.....................................1 1.2研究動機.....................................2 1.3論文架構.....................................4 第二章 摻鉺光纖雷射的基本原理 2.1摻鉺光纖放大器的基本特性.....................5 2.2光纖光柵的基本原理..........................11 第三章 Pump Power調變的光纖雷射 3.1研究簡述....................................14 3.2實驗架構與步驟..............................15 3.3實驗結果與討論..............................17 第四章 Long-Period Fiber Grating調變的光纖雷射 4.1研究簡述....................................33 4.2實驗架構與步驟..............................34 4.3實驗結果與討論..............................42 第五章 結論與未來展望...............................59 參考文獻.......................................61      

    [1] “研究生:陳俊達, 指導教授:王立康”長距離光纖通訊系統中訊號變形對系統性能影響之探討”,清華大學光電工程研究所碩士班”.
    [2] Yong Wook Lee and Byoungho Lee, “Wavelength-Switchable Erbium-Doped Fiber Ring Laser Using Spectral Polarization-Dependent Loss Element,” IEEE Photonics Technology Letters,Vol.15, pp. 795-797, 2003.
    [3] Xinhuan Feng, Yange Liu, Shenggui Fu, Shuzhong Yuan, and Xiaoyi Dong, “Switchable Dual-Wavelength Ytterbium-Doped Fiber Laser Based on a Few-Mode Fiber Grating,” IEEE Photonics Technology Letters,Vol.16, pp. 762-764, 2004.
    [4] Young-Geun Han, Gilhwan Kim, Ju Han Lee, Sang Hyuck Kim, and Sang Bae Lee, “Lasing Wavelength and Spacing Switchable Multiwavelength Fiber Laser From 1510 to 1620 nm,” IEEE Photonics Technology Letters,Vol.17, pp. 989-991, 2005.
    [5] S. Hu, L. Zhan, Y. J. Song, W. Li, S. Y. Luo,and Y. X. Xia, “Switchable Multiwavelength Erbium-Doped Fiber Ring Laser With a Multisection High-Birefringence Fiber Loop Mirror,” IEEE Photonics Technology Letters,Vol.17, pp. 1387-1389, 2005.
    [6] Xueming Liu, Xiaoqun Zhou, Xiufeng Tang, Junhong Ng, Jianzhong Hao, Teck Yoong Chai, Edward Leong,and Chao Lu, “Switchable and Tunable Multiwavelength Erbium-Doped Fiber Laser With Fiber Bragg Gratings and Photonic Crystal Fiber,” IEEE Photonics Technology Letters,Vol.17, pp. 1626-1628, 2005.
    [7] Xinhuan Feng, Hwa-Yaw Tam,P. K. A. Wai,and Senior Member, “Switchable Multiwavelength Erbium-Doped Fiber Laser With a Multimode Fiber Bragg Grating and Photonic Crystal Fiber,” IEEE Photonics Technology Letters,Vol.18, pp. 1088-1090, 2006.
    [8] Li Xia, P. Shum, Min Yan, YiXin Wang,and Tee Hiang Cheng, “Tunable and Switchable Fiber Ring Laser Among Four Wavelengths With Ultranarrow Wavelength Spacing Using a Quadruple-Transmission-Band Fiber Bragg Grating Filter,” IEEE Photonics Technology Letters,Vol.18, pp. 2038-2040, 2006.
    [9] Xiaoying He, D. N. Wang,and C. R. Liao, “Tunable and Switchable Dual-Wavelength Single-Longitudinal-Mode Erbium-Doped Fiber Lasers,” Journal of Lightwave Technology,Vol.29, pp. 842-848, 2011.
    [10] P. Urquhart, “Review of rare earth doped fibre lasers and amplifiers,” Optoelectronics, IEE Proceedings J,Vol.135, pp. 385 - 407, 1988.
    [11] Gang-Chih Lin, Likarn Wang, C. C. Yang, M. C. Shih, and T. J. Chuang, “Thermal Performance of Metal-Clad Fiber Bragg Grating Sensors,” IEEE Photonics Technology Letters,Vol.10, pp. 406-408, 1998.
    [12] Wei He, Hongbo Cheng, Jiachun Mei, and Desheng Jiang, “Direct measurement of strain-optic effect in fiber Bragg gratings,” Optical Fiber Sensors Conference Technical Digest, 2002. Ofs 2002, 15th, pp. 171-174, 2002.
    [13] K. Shima, K. Himeno,T. Sakai,S. Okude,A. Wada,and R. Yamauchi, “A novel temperature-insensitive long-period fiber grating using a boron-codoped-germanosilicate-core fiber,” Conference on Optical Fiber Communication. OFC 97., pp. 347-348, 1997.
    [14] Joo-Nyung Pang, Se Yoon Kim, Sun-Wook Kim and Min-Sung Kim, “Temperature insensitive long-period fibre gratings,” Electronics Letters,Vol.35, pp. 2134-2136, 1999.
    [15] Mei Nar Ng, Zhihao Chen, and Kin Seng Chiang, “Temperature Compensation of Long-Period Fiber Grating for Refractive-Index Sensing With Bending Effect,” IEEE Photonics Technology Letters,Vol.14, pp. 361-362, 2002.
    [16] Y. Sun,J. L. Zyskind,and A. K. Srivastava, “Average Inversion Level, Modeling, and Physics of Erbium-Doped Fiber Amplifiers,” IEEE Journal of Selected Topics in Quantum Electronics,Vol.3, pp. 991-1007, 1997.
    [17] P.C.Becker, N.A.Olsson,and J.R.Simpson, Erbium-Doped Fiber Amplifiers:Fundamentals and Technology, ACADEMIC: 1997.
    [18] K.O. Hill,B. Malo,F. Bilodeau,D.C. Johnson,and J. Albert, “Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Applied Physics Letters,Vol.62, pp. 1035-1037, 1993.
    [19] Kin Seng Chiang, Yunqi Liu, Mei Nar Ng and Xiaoyi Dong, “Analysis of etched long-period fibre grating and its response to external refractive index,” Electronics Letters,Vol.36, pp. 966-967, 2000.
    [20] D. B. Mortimore, “Fiber Loop Reflectors,” Journal of Lightwave Technology,Vol.6, pp. 1217-1224, 1988.
    [21] S. W. Harun, P. Poopalan, and H. Ahmad, “Gain Enhancement in L-Band EDFA Through a Double-Pass Technique,” IEEE Photonics Technology Letters,Vol.14, pp. 296-297, 2002.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE