研究生: |
甘凱存 Kan, Kai-Tsun |
---|---|
論文名稱: |
循環腫瘤細胞簇之分選與培養觀察之微型晶片研發 A microsystem chip for the sorting and culturing of circulating tumor cell clusters |
指導教授: |
劉承賢
Liu, Cheng-Hsien |
口試委員: |
陳國聲
Chen, Kuo-Shen 張晃猷 Chang, Hwan-You |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 83 |
中文關鍵詞: | 微流體晶片 、循環腫瘤細胞簇 、Collagen 、確定性側向位移 、介電泳技術 、細胞培養平台 |
外文關鍵詞: | microfluidic chip, circulating tumor cell clusters, collagen, n, deterministic lateral displacement, dielectrophoresis, cell culture platform |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著科技的發展,人民的生活水平也隨之蒸蒸日上,然而現代人的壞習慣、過度的工作壓力以及環境的惡化,導致癌症成為了現代人在這個社會上的一種文明病,由於癌症細胞在不同的患者身上,他的基因序列也會有所差別,因此造成了個人化的差異性,人類積極地去尋找體外測試平台,此造就了微流體晶片的產生,微流體晶片相較於其他傳統的醫療技術,晶片的體積小,也可以同時進行多組的實驗研究比對,可以一次性大量的收取數據,減少人為上的誤差。
本研究開發之微流體晶片系統,結合三個主要部分,前段為確定性側向位移結構,中段為介電泳技術之特定頻率細胞篩選,後段建構出體外細胞培養平台,透過膠原蛋白(簡稱 Collagen ) 作為細胞支架,建構出細胞培養環境提供肺癌細胞在人體中的生長環境。
實驗結果顯示,在確定性側向位移和特定頻率的介電泳力上可以有效地將人體癌症肺泡上皮細胞(A549)從血液樣本中偏離出來,最終獲得86%的循環腫瘤細胞簇的捕獲率,並且在細胞培養平台上進行培養,經過兩天的培養,可獲得90%的細胞存活率,證明了此晶片的可行性,從雙和醫院孫偉倫博士那取得病人血液樣本,並通過IRB認證,在此晶片下進行實驗,並捕獲出循環腫瘤細胞,由此結果可以證實此晶片可以在全血下測試,並有良好的捕獲效果。
With the development of science and technology, the standard of living for humans has gradually improved. However, the bad habits of modern people, excessive work pressure and the deterioration of the environment have caused cancer to become a civilization disease in this society. In different patients, his gene sequence will also be different, thus causing individual differences. Humans are actively looking for in-vitro testing platforms, which has led to the generation of microfluidic chips. Compared with other traditional tools, microfluidic chips can simultaneously carry out multiple groups of experimental comparisons and collect a large amount of data to reduce human labor and errors.
The microfluidic chip system developed in this research combines three main parts. The front part is the deterministic lateral displacement structure. The middle part takes advantage of dielectrophoresis-induced cell sorting. The final part is an in-vitro cell culture platform using collagen as a cell scaffold. The cell culture environment is constructed to provide a growth environment for lung cancer cells.
The experimental results show that A549 can be effectively sorted from blood samples via deterministic lateral displacement and dielectrophoretic forces. A capture rate of 86% of circulating tumor cell clusters was achieved. After two days of culture on the chip, a cell viability rate of 90% was obtained. The patient blood sample is from Shuanghe Hospital under IRB number approval number. We demonstrated the features of our microsystem chip for the sorting, capturing and culturing of circulating tumor cells.
[1] Roser, M. and Ritchie, H., "Cancer," Published online at OurWorldInData.org, 2015.
[2] Julie, A. B., Charles, A. P., Juan, P. W., "Global Epidemiology of Lung Cancer," Ann Glob Health, 2019 Jan 22;85(1):8.
[3] Guan, X. , "Cancer metastases: challenges and opportunities," Acta Pharm Sin B. ,2015;5(5):402-418. doi:10.1016/j.apsb.2015.07.005.
[4] Alix-Panabieres, C. and Pantel, K. , "Circulating Tumor Cells: Liquid Biopsy of Cancer," Clinical Chemistry, vol. 59, no. 1, pp. 110–118, 2013.
[5] Giuliano, M. , Shaikh, A. , Lo, HC, Arpino, G. ,De Placido, S. , Zhang, X.H. , Cristofanilli, M. , Schif,f R. , Trivedi, M.V, "Perspective on Circulating Tumor Cell Clusters: Why It Takes a Village to Metastasize," Cancer Res, 2018 Feb 15;78(4):845-852. doi: 10.1158/0008-5472.CA.
[6] Aceto, N., Bardia, A., Miyamoto, D.T., Donaldson, M.C., Wittner, B.S., Spencer, J.A., Yu, M., Pely, A., Engstrom, A., Zhu, H., Brannigan, B.W., Kapur, R., Stott, S.L., Shioda, T., Ramaswamy, S., Ting, D.T., Lin, C.P., Toner, M, Haber, DA, Maheswaran, S, "Circulating tumor cell clusters are oligoclon."
[7] Hong, Y.,Fang, F., and Zhang, Q., "Circulating tumor cell clusters: What we know and what we expect (Review)," International Journal of Oncology, vol. 49, no. 6, pp. 2206–2216, 2016.
[8] Haemmerle, M., Stone, R.L., Menter, D.G., Afshar-Kharghan, V., and Sood,A.K. "The Platelet Lifeline To Cancer: Challenges and Opportunities," Cancer Cell, vol. 33, no. 6, pp. 965–983, 2018.
[9] Szczerba, B. M., Castro-Giner, F., Vetter, M., Krol, I., Gkountela, S., Landin, J., Aceto, N. (2019). "Neutrophils escort circulating tumour cells to enable cell cycle progression," Nature, 566(7745), 553-557. doi:10.1038/s41586-019-0915-y.
[10] Karimi, A., Yazdi, S., & Ardekani, A. M. (2013). "Hydrodynamic mechanisms of cell and particle trapping in microfluidics," Biomicrofluidics, 7(2), 021501. doi:10.1063/1.4799787.
[11] Huang, L.R., et al., "Continuous particle separation through deterministic lateral displacement," Science, 2004. 304(5673): p. 987-990.
[12] Salafi, T., Zhang, Y., " A Review on Deterministic Lateral Displacement for Particle Separation and Detection," Nano-Micro Letters, 2019. 11(1): p. 77.
[13] Zhang, S., et al. "A concise review of microfluidic particle manipulation methods," Microfluidics and Nanofluidics, 2020. 24(4): p. 24.
[14] Ozcelik, A., Rufo, J., Guo, F., Gu, Y., Li, P., Lata, J., & Huang, T. J. (2018). "Acoustic tweezers for the life sciences," Nature Methods, 15(12), 1021-1028. doi:10.1038/s41592-018-0222-9.
[15] Ozcelik, A., et al. "Acoustic tweezers for the life sciences," Nature methods, 2018. 15(12): p. 1021-1028.
[16] Petersson, F., et al. "Separation of lipids from blood utilizing ultrasonic standing waves in microfluidic channels," Analyst, 2004. 129(10): p. 938-943.
[17] Hawkes, J.J., et al. "Continuous cell washing and mixing driven by an ultrasound standing wave within a microfluidic channel,"Lab on a Chip, 2004. 4(5): p. 446-452.
[18] Pohl, H.A. "The Motion and Precipitation of Suspensoids in Divergent Electric Fields," Journal of Applied Physics, 1951. 22(7): p. 869-871.
[19] Cummings, E.B. and A.K. Singh, "Dielectrophoresis in microchips containing arrays of insulating posts: theoretical and experimental results,"Analytical chemistry, 2003. 75(18): p. 4724-4731.
[20] Adams, J.D., U. Kim, and H.T. Soh, "Multitarget magnetic activated cell sorter," Proceedings of the National Academy of Sciences, 2008. 105(47): p. 18165-18170.
[21] Tornay, R., et al., "Dielectrophoresis-based particle exchanger for the manipulation and surface functionalization of particles," Lab on a Chip, 2008. 8(2): p. 267-273.
[22] Ashkin, A., et al., "Observation of a single-beam gradient force optical trap for dielectric particles," Optics letters, 1986. 11(5): p. 288-290.
[23] Arai, Y., et al., "Tying a molecular knot with optical tweezers," Nature, 1999. 399(6735): p. 446-448.
[24] Van Reenen, A., et al., "Integrated lab-on-chip biosensing systems based on magnetic particle actuation–a comprehensive review." Lab on a Chip, 2014. 14(12): p. 1966-1986.
[25] Yao, J., et al., "Microfluidic device embedding electrodes for dielectrophoretic manipulation of cells-A review." ELECTROPHORESIS, 2019. 40(8): p. 1166-1177.
[26] Huang, Y., et al., "Differences in the AC electrodynamics of viable and non-viable yeast cells determined through combined dielectrophoresis and electrorotation studies." Physics in Medicine & Biology, 1992. 37(7): p. 1499.
[27] Song, H., “Continuous-flow sorting of stem cells and differentiation products based on dielectrophoresis,” Lab on a Chip, p. 2, 6 1 2015.
[28] Salafi, T., hang, Y. Z. " A Review on Deterministic Lateral Displacement for Particle Separation and Detection," Nano-Micro Lett. 2019, 11, 77.
[29] Liu,Z., Zhang,W. , Huang,F., Feng, H., Shu, W. , Xu, X., Chen,Y., Biosens. Bioelectron. 2013, 47, 113.
[30] Davis,J.A., Inglis,D.W., Morton,K.J., Lawrence,D.A., Huang,L.R., Chou,S.Y., Sturm,J.C., Austin,R.H.,Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 14779.
[31] Inglis,D.W., Lord,M., Nordon,R.E., Micromech,J., Microeng. 2011, 21, 054024.
[32] Tottori, N., Nisisako,T., Anal. Chem. 2019, 91, 3093.
[33] Zeming, K.K., Vernekar,R. , Chua,M.T. , Quek,K.Y., Sutton,G., Krüger,T., Sen W., Kuan, J. H. , Small 2021, 17, 1.
[34] Huang, L.R., et al. "Continuous Particle Separation Through Deterministic Lateral Displacement," Science, vol. 304, no. 5673, pp. 987–990, 2004.
[35] Davis,J.A. , "Microfluidic Separation of Blood Components through Deterministic Lateral Displacement," PhD Thesis, no. September, 2008.
[36] Gagnon, Z.R., "Cellular dielectrophoresis: Applications to the characterization, manipulation, separation and patterning of cells." ELECTROPHORESIS, 2011. 32(18): p. 2466-2487.
[37] Wagner, K.W., "Erklärung der dielektrischen Nachwirkungsvorgänge auf Grund Maxwellscher Vorstellungen." Archiv für Elektrotechnik, 1914. 2(9): p. 371-387.
[38] Irimajiri, A., Hanai,T. and Inouye, A., "A dielectric theory of “multi-stratified shell” model with its application to a lymphoma cell." Journal of Theoretical Biology, 1979. 78(2): p. 251-269.
[39] Cottet, Jonathan, Fabregue, Olivier, Berger, Charles, Buret, François, Renaud, Philippe & Frénéa-Robin, Marie. "MyDEP: a new computational tool for dielectric modeling of particles and cells." Biophysical Journal, doi: 10.1016/j.bpj.2018.11.021 (2018).