研究生: |
顏精一 JingYi Yan |
---|---|
論文名稱: |
高解析能量過濾電鏡分析奈米材料系統電子組態及結構之變化 The electronic configuration and structure analysis in nanomaterial with high resolution EFTEM |
指導教授: |
開執中
Ji-Jung Kai 陳福榮 Fu-Rong Chen |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 137 |
中文關鍵詞: | 穿透式電子顯微鏡 、電子能量損失能譜 、氧化鋅奈米線 、連續能譜影像法 |
外文關鍵詞: | TEM, EELS, Zno nanowire, ESI |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本論文主要探討如何增進穿透式電子顯微鏡與電子能量損失譜儀對於奈米材料系統的分析能力,並解決現今穿透電鏡在分析奈米材料系統時所遭遇到的難題。在奈米材料系統中,材料的組成、結構以及特性均會因為量子效應以及表面效應而有所改變,上述三個現象對於發展奈米科技佔有舉足輕重的角色,因為若是無法正確的掌握材料的特性,則無法有效的將材料應用於奈米元件上。因此對於現今的奈米科技而言,當務之急便是要發展在奈米尺度下量測材料性質的工具或技術。然而,大多數的分析工具並無法具有奈米尺度甚至近原子尺寸的空間解析度,故在分析上均是算是統計的結果而並非個別奈米材料的性質。場發射穿透式電子顯微鏡的優點在於能夠快速變換空間解析度,可以由微米尺度到近原子尺度,因此可以分析的範圍非常廣泛,電子能量損失譜儀則是藉由收集入射電子因穿透樣品時與樣品作用產生的能量損失能譜結合理論模擬計算之後可以得到材料的組成及電子組態。而由電子損失能譜結合二維空間分佈技術可以得到元素及濃度的空間分佈,不過卻無法得到材料特性的二維空間分佈,本篇論文使用快速傅立業內插法、最大熵解卷法以及小波轉換去除雜訊法增進能量損失譜儀的能量解析度以及去除能量損失譜中的雜訊,使得經由改良式連續能譜影像法所擷取的能量損失譜具有定性與定量的特性。
穿透式電子顯微鏡在拍攝高分辨影像時容易受外界或是記錄系統本身的雜訊所影響而導致影像品質及解析度下降,這現象對於掃瞄穿透式電鏡暗場影像特別明顯。因此,本篇論文討論在穿透式顯微鏡以及掃瞄穿透式電鏡暗場影像雜訊的特性及行為,並提出以小波轉化去除雜訊的方式最有效率而且可以回復掃瞄穿透式電鏡暗場影像的品質與原子序對比。
最後,結合高分辨電子顯微鏡、電子能量損失譜儀以及光致激發螢光譜儀分析本實驗室所自行合成之不同尺寸的氧化鋅奈米線的性質。藉由致激發螢光譜儀分析不同尺寸的氧化鋅奈米線並結合電子損失能量譜儀分析個別奈米線的能隙證明氧化鋅奈米線的綠光光譜特性主要是由表面效應所主導,此外,配合理論計算(FEFF code)與鋅(Zn) 元素L2,3核損失峰之電子能量損失譜的分析確認氧化鋅奈米線綠光光譜的發光機制主要是由於氧空缺存在於奈米線表面所導致。同時,亦觀察得出當氧化鋅奈米線線徑小於20奈米時開始有輕微的量子侷限效應產生,亦會反映在材料的電漿損失能量上,這行為在材料線徑小於10奈米時更為明顯,證明氧化鋅奈米線的尺度即使大於該材料之激子波爾半徑仍會有量子侷限效應產生。
Abstract
In this work, the study is to improve the analysis of the transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) in nanomaterial system. In nanoscale, the property, structure and composition of materials will be changed due to quantum effect and surface effect. Therefore, how to understand and control these three parameters is very important to design and apply the materials in nanotechnology. The advantage of field emission TEM is owns very high spatial resolution such as 1~2Å and can do individual analysis or measurement for each nanomaterails system. Besides, combining the theoretical calculation and electron energy loss spectrum collected the energy loss electrons can reveal the material properties. Although energy filtered TEM (EFTEM) can provide two dimensional information of chemical distribution (composition), it can not give properties information. Therefore, the new electron spectroscopic imaging series technique (ESI), which named advanced ESI technique is develop to improve the energy resolution of EEL-spectra, increasing the sampling of raw data and removes the noise and article by employing three numerical methods as maximum entropy deconvolution (MEM), fast Fourier interpolation and wavelet denoising method. The EEL-spectra which extracted from the newly developed advanced ESI technique is not only provide the properties of materials but also can do the quantification analysis.
The noise which caused by the environment or recording system (CCD or image plate) is one of the problems in the high resolution image especially for high angle annular dark field image (HAADF) in scanning transmission electron microscopy (STEM) and it will reduce the spatial resolution and image quality. We study the noise behavior in HAADF image and demonstrate wavelet denoising method as the best method because not only reducing the noise contribution in HAADF image but also restorimg the image quality, resolution and Z-contrast ability.
In the last session of this work, combing the high resolution TEM, EELS and photoluminescence (PL) analysis, the properties of different diameter ZnO nanowires have been investigated. First, the PL-spectra of different ZnO nanowires reveal the green emission will increase while the diameter decreased and the ratio of green/UV emission is almost consisted with the surface-to-volume (S/V) ratio of nanowires. For further analysis, the bandgap measurement from surface and center region of individual nanowires was done by low loss EELS analysis technique. These results indicate that the surface effect will predominate the photoluminesence of ZnO nanowires. The oxygen vacancy is identified as green emission mechanism by comparing with Zn L2,3 core loss EEL-spectrum and theoretical calculation with different defect model by FEFF V8.2 code which based on the real space multiple scattering calculation. The quantum confinement effect which contributed in plasmon loss energy is observed while the diameter of ZnO nanowires small than 20nm and it becomes more obviously in 10nm and smaller. The relationship of the quantum confinement effect and plasmon loss energy is derived by simply quantum mechansim. The correlation of the quantum confinement effect and diameter of ZnO nanowires can be found by fitting with experimental data. The experimental results also reveal the quantum confinement effect can be observed in the weak confinement region.
參考文獻
1. O. Scherzer, J. Appl. Phys., 20:20 (1949)
2. M. Haider, Optik, 99:167 (1995)
3. M. Haider, S. Uhlemann, E. Schwan, H. Rose, B. Kabius and K. Urban, Nature, 392:768 (1998)
4. F. Hosokawa, T. Tomita, M. Naruse, T. Honda, P. Hartel and M. Haider, J. Elec. Microsc., 52:3 (2003)
5. L. Y. Chang, F. R. Chen, A. I. Kirkland and J. J. kai, J. Elec. Microsc., 52:359 (2003)
6. W. O. Saxton, Computer Techniques for Image Processing in Electron Microscopy, Academic Press, New York, (1978)
7. W. K. Hsieh, F. R. Chen, J. J. Kai and A. I. Kirkland, Ultramicrosc., 98:99 (2004)
8. D. Van Dyck, M. Op de Beeck, in: proceeding of the 12th International Congress for Electron Microscopy, Scattle, 1990, P2
9. M. von Ardenne, Das elektronenmikroskop. Z. fur. Physik., 78:318 (1938)
10. A. V. Crewe, J. Wall and L. M. Welter, J. Appl. Phys, 39:5861 (1968).
11. A. V. Crewe and J. Wall, J. Mol. Biol. 48:375, (1970)
12. J. M. Cowley, Appl. Phys. Letters, 15:58-59, 1969.
13. A. V. Crewe and J. Wall, Optik, 30:461 (1970)
14. A. Howie, J. Microsc., 117:11 (1979)
15. S. J. Pennycook and D. E. Jesson, Ultramicrosc., 37:14 (1991)
16. D. E. Jesson and S. J. Pennycook, Proceeding: Mathematical and Physical Sciences, 449:273 (1995)
17. P. Rez, Ultramicrosc., 96:117 (2003)
18. P. D. Nellist and S. J. Pennycook, Ultramicrosc., 78:111 (1999)
19. E. J. Kirkland, R. F. Loane and J. Silcox, Ultramicrosc., 23:77 (1987)
20. R. F. Loane, E. J. Kirkland and J. Silcox, Acta. Cryst. A., 44:912 (1988)
21. R. J. Keyse, A. J. Garrat-Reed, P. J. Goodhew and G. W. Lorimer, “Introduction to Scanning Transmission Electron Microscopy”, BIOS Scientific Publisher Limited, (1998)
22. C. Mory, C. Colliex and J. M. Cowley, Ultramicrosc., 21:171 (1987)
23. E. J. Kirkland “Advanced Computing in Electron Microscopy”, Plenum Press, New York and London. (1998)
24. H. S. V. Harrach, Ultramicrosc., 58:1 (1995)
25. D. A. Muller and J. Silcox, Ultramicrosc., 59:195 (1995)
26. P. E. Batson, Ultramicrosc., 78:33 (1999)
27. E. M. James and N. D. Browning, Ultramicrosc, 78:125 (1999).
28. P. D. Nellist and S. J. Pennycook, J. Microsc., 190:159 (1998)
29. K. Ishizuka, J. Elec. Microsc., 50:291 (2001)
30. K. Watanabe, Y. Kotaka, N. Nakanishi, T. Yanazaki, I. Hashimoto and M. Shiojiri, Ultramicrosc., 92:191 (2002)
31. N. Nakanishi, T. Yamazaki, A. Rečnik, M. Čeh, M. Kawasaki, K. Watanabe and M. Shiojiri, J. Electron. Microsc., 51:383 (2002)
32. A. J. McGibbon, S. J. Pennycook and D. E. Jesson, J. Microsc., 195:44 (1999)
33. L. Reimer, “Energy-Filtering Transmission Electron Microscopy”, Springer-Verlag Heidelberg, New York (1995)
34. G. Ruthemann, Diskrete Engerieverluste schneller Elektronen in Festkorpern. Natureiss. 29:648 (1941)
35. J. Hiller and R. F. Baker, J. Appl. Phys. 15:663 (1944)
36. R. F. Egerton, “Electron-energy loss spectroscopy in the electron microscopy “, Plenum Press, New York, (1996)
37. A. W. Blackstick, R. D. Birkhoff and M. Slater, Rev. Sci. Instrum. 26:274 (1955)
38. G. H. Curtis and J. Silcox, Rev. Sci. Intrum. 42:630 (1971)
39. R. H. Jakobs and J. Geiger, Phys. Stat. sol. (b) 95:549 (1979)
40. H. Boersch, Optik. 5:436 (1949)
41. G. Möllenstedt and O. Rang, Z. angew. Phys. 3:187 (1951)
42. L. Henry and R. Castaing, C.R. Acad. Sci. Paris B255:76 (1962)
43. R. M. Henkelman and F. P. Ottensmeyer, J. Microsc. 47:109 (1974a)
44. C. Jeanguillaume, Trebbia P, and C. Colliex, Ultramicroscopy 3: 237 (1978)
45. O. L. Krivanek, A. J. Gubbens, M. K. Kundmann, and G. C. Carpenter, 51st Ann. Proc. Electron Microsc. Soc. Am. (San Francisco Press, San Francisco) 586 (1993)
46. H. Shuman, C. F. Chang and A. P. Somlyo, Ultramicorsc., 19:121 (1986)
47. P. A. Crozier, Ultramicorsc., 58:157 (1995)
48. J. Bentkey, E. L. Hall and E. A. Kenik, Proc. Microscopy and Microanalysis. 268 (1995)
49. F. Hofer, W. Grogger, G. Kothleitnrt and P. Warbichler, Ultramicrosc., 67:83 (1997)
50. J. Mayer, U. Eigenthaler, J. M. Plitzko, and F. Dettenwanger, Micron 5: 361 (1997)
51. F. Hofer and P. Warbichler, Ultramucrosc., 63:21 (1996)
52. N. Bonnet, C. Coliex, C. Mory and M. Tence, Scanning Microscopy 2(Suppl.) 351 (1988)
53. A. Berger, J. Mayer and H. Kohl, Ultramicrosc., 55:101 (1994)
54. P. A. Crozier and R. F. Egerton, Ultramicrosc., 27:9 (1988)
55. D. B. Williams and C. B. Carter, “Transmission Electron Microscopy”, Plenum Press. New York & London, (1996)
56. T. Malis, S. Cheng and R. F. Egerton, J. Electron. Microsc. Tech. 8:8471 (1988)
57. F. Hofer, W. Grogger, and P. Warbichler, Ultramircosc., 59:15 (1995)
58. W. Jager and J. Mayer, Ultramicrosc., 38:47 (1995)
59. M. Schenner, M. Nelhiebel and P. Schattschneider, Ultramicrosc., 65:95 (1996)
60. R. F. Egerton and M. J. Whelab, J. Electron. Spectrosc. 3:232 (1974a)
61. R. F. Egerton and M. J. Whelab,. Philos. Mag. 30:739 (1974b)
62. S. D. Beger, D. R. Mckenzie and P. J. Martin, Philos. Mag. Lett. 57:285 (1988)
63. J. Mayer and J. M. Plitzko, J. Microsc. 183:2 (1996)
64. J. M. Martin, B. Vacher, L. Ponsonnet and V. Dupuis, Ultramicrosc., 65:229 (1996)
65. K. Varlot, J. M. Martin, C. Quet and Y. Kihn, Ultramicrosc., 68:123 (1997)
66. A. Rzzi, J. anal. Chem. 358:15 (1997)
67. L. Ponsonnet, B. Vacher and J. M. Martin, Thin. Solid. Film., 324:170 (1998)
68. P. J. Thomas and P. A. Midgley Microsc. Microanal 5 (Suppl. 2: Proceedings) 618 (1999)
69. P. J. Thomas, P. A. Midgley, and P. Spellward, Inst. Phys Conf. Ser. 161: (EMAG 99) (1999)
70. F. Hofer, W. Grogger, P. Warbichler and I. Papst, Mikrochim. Acta. 132:273 (2000)
71. W. Grogger, F. Hofer, P. Warbichler, and G. Kothleitner, Microsc. Microanal. Microstruct. 6: 161 (2000)
72. P. J. Thomas and P. A. Midgley, Ultramicrosc., 88:179 (2001)
73. V. J. Keast, A. J. Scott, R. Brydson, D. B. Williams and J. Brulley. J. Microsc. 203:135 (2001)
74. Shen-Chuan Lo, Ji-Jung Kai, Fu-Rong Chen, Li-Chien Chen, Li Chang, Cheng-Cheng Chiang, Peijun Ding, Barry Chin, Hong Zhang, and Fusen Chen, Journal of electron Microscopy, 50:497 (2002)
75. P. J. Thomas and P. A. Midgley, Ultramicrosc., 88:187 (2001)
76. A. Howie, 39th Ann. Proc. Electron Microsc. Soc. Am. Ed. G. W. Bailey, Claitor’s Publishing, Baton Rouge, Louisiana, pp:186 (1981)
77. D. A. Muller and J. Silcox, Ultramicrosc., 59:195 (1995)
78. A. J. Bourdillon, N. W. Self and W. M. Stobbs, Phil. Mag. A. 44:1335 (1981b)
79. K. Singhal and J. Wlach, Proc. IEEE. 1558. (1972)
80. D. Fraser, IEEE. Trans. Acoust., Speech, Signal Processing. 37(5):665 (1989)
81. C. R. Gonzalez and E. R. Woods, “Digital Image Processing”, Addison Wesley, (1993)
82. S. F. Gull and G. J. Daniell, Nature. 272:686 (1978)
83. N. Agmon, Y. Alhassid and R. D. Levine, J. Comp. Phys., 30:250 (1979)
84. R. Wilczek and S. Drapatz, Astron. Astrophys., 142:9 (1985)
85. M. H. F. Overwijk and D. Reefman, Micron. 31:325 (2000)
86. F. R. Chen, J. J. Kai, L. Chang, J. Y. Wang and W. J. Chen, J. Elec. Microsc. 48(6):827 (1999)
87. F. R. Chen, H. Ichnose, J. J. Kai and L. Chang, J. Elec. Microsc. 50:529 (2001)
88. J. M. Cowley and A. F. Moodie, Acta Crystallogr., 10:609 (1957)
89. 陳厚模, 科儀新知 第九卷 第一期 民國七十六年七月 71頁
90. J. S. Lim, “Two-dimensional Signal and Image Processing”, Englewood Cliffs, Prentice Hall(1990)
91. L. D. Marks, Ultramicrosc., 62:43 (1996)
92. M. L. Sattler and M. A. O’Keefe, Proc. EMSA, 45:104 (1987)
93. R. Kilaas, J. Microsc., 190:45 (1998).
94. I. Daubehies, Comm. Pure Appl. Math. 41:909 (1988)
95. S. Mallat, IEEE. Trans. Pattern. Anal. & Machine Intell., 11:674 (1989)
96. P. Goupillaud, A. Grossmann and J. Morlet, Geoexploration. 23:85 (1984)
97. K. Jetter, U. Depczynski, K. Molt and A. Niemoller, Analytica. Chimica. Acta. 420:169 (2000)
98. I. Daubechies, “Ten Lectures on Wavelets” SIAM, Regional conference series in applied mathematics. (1992)
99. Y.Y. Tang, L.H. Yang, J. Liu, and H. Ma, “Wavelet Theory and Its Application to Pattern Recognition” Volume 61, World Scientific. (2000)
100. D. E. Newland, “An introduction to Random vibrations, spectral and wavelet analysis”, Prentice-Hall (1993)
101. 單維彰 (2000) 凌波初步First concept of wavelets (全華科技)
102. S. Muto, J. Elec. Microsc. 49(4):525 (2000)
103. D. Donoho and I. Johnstone, Ideal Spatial Adaptation via wavelet Shrinkage. Technical report, Department of Statistics, Stanford Univ. USA, 1992.
104. S. G. Nikolov, H. Hutter and M. Grasserbauer, Chem. Int. Lab. Sys. 34:263 (1996)
105. U. Depczynski, K. Jetter, K. Molt and A. Niemoller, Chem. Int. Lab. Sys. 49:151 (1999)
106. J. Robertson and E. P. O’Reilly, Phys. Rev. B., 35, p:2946 (1987)
107. J. Robertson, Surf & Coat Tech. 185-203. (1992)
108. R. D. Leapman, P. L. Fejes and J. Silcox, Phys. Rev. B 28:2361 (1983)
109. N. K. Menon and J. Yuan, Ultramicrosc., 74:83 (1998)
110. A. J. Papworth, C. J. Kiely, A. P. Burden, S. R. P. Silva and G. A. J. Amaratunga, Phys. Rev. B., 62:12628 (2000)
111. A. C. Ferrari, B. K. Tanner, V. Stolojan, L. M. Brown, S. E. Rodil, B. Kleinsorge and J. Robertson, Phys. Rev. B., 62:11089 (2000)
112. C. A. Davis, G. A. J. Amaratunga and K. M. Knowles, Phys. Rev. Lett., 80:3280 (1998)
113. I. Alexandrou, H-J. Scheibe, C. J. Kiely and A. J. Papworth, Phys. Rev. B., 60:10903 (1999)
114. S. Prochazka, “Special Ceramics 6” Brit. Ceram. Res. Associ. Stoke-on Trent UK, p171 (1975)
115. 陳建文, 碩士論文“碳化矽/碳化矽 複合材料應用於核融合反應之輻射效應研究”, 清華大學 工程與系統科學系 (2002)
116. 方柏傑, 碩士論文“應用於核融合之Tyranno-SA纖維/碳化矽複合材料輻射效應研究”, 清華大學 工程與系統科學系 (2002)
117. A. Hasegawa, A. Kohyama, R. H. Jones, L. L. Sheas, B. Riccardi and P. Fenici, J. nuclear, Mater., 283-287:128 (2000)
118. S. P. Lee, J. S. Park, Y. Katoh, A. Kohyama, D. H. Kim, J. K. Lee and H. K. Yoon, J. Nuclear, Mater., 307-311:1191 (2002)
119. W. Yang, A. Kohyama, T. Noda, Y. Katoh, T. Hinoki, H. Araki and J, Yu, J. Nuclear, Mater., 307-311:1088 (2002)
120. S. M. Dong, G. Chollon, C. L-M. Lahaye, A. Gutte, J. L. Bruneel, M. Couzi, R. Naslain and D. L. Jianf, J. Mater. Sci., 36:2371 (2001)
121. F. Rebillat, J. Lamon and R. Naslain, J. Am. Ceram. Soc., 81(9):2315 (1998)
122. S. Dong, Y. Katoh and A. Kohyama, J. Am. Ceram. Soc., 86(1):26 (2003)
123. Z. W. Pan, Z. R. Dai and Z. L. Wang., Science, 291:1947 (2001)
124. Y. Wu and P. Yang, J. Am. Chem. Soc., 123:3165 (2002)
125. 王明山, 碩士論文“氧化鋅奈米線成長控制及發光性質之研究”, 清華大學 工程與系統科學系 (2003)
126. 郭憲政, 碩士論文“氧化鋅奈米結構之光致激發螢光光譜之研究”, 清華大學 物理學系 (2003)
127. E. G. Bylander, J. Appl. Phys., 49(3):1188 (1978).
128. K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant and J. A. Voigt, Appl. Phys. Lett., 68(3):403 (1996).
129. L. Guo and S. Yang, Chem. Mater. 12:2268 (2000)
130. B. Lin, Z. Fu and Y. Jia, J. Electrochem. Soc., 148(3):G110 (2001)
131. P. E. Baston, K. L. Kavanagh, J. M. Woodall and J .Mayer, Phys. Rev. Lett. 57:2729 (1986)
132. R. J. Elliott, Rhys. Rev. 108:1384 (1957)
133. N. Peyghambarian, S. W. Kocj and A. Mysyrowicz, “Introduction to semiconduction optics”, Prentice-Hall, Inc (1993)
134. R. D. Leapman, P. Rez, and D. F. Mayers, J. Chem. Phys., 72:1232 (1980)
135. R. D. Leapman, L. A. Grunes and P. L. Fejes, Phys. Rev. B., 28:2361 (1982)
136. http://leonardo.phys.washington.edu/feff/
137. J. J. Rehr and R. C. Albers, Rev. Mod. Phys., 72(3), 621 (2000)
138. B. Ravel, J. Synchrotron Rad., 8:314 (2001)
139. S. T. Pantelides, Phys. Rev. B, 11(6):2391 (1975)
140. A. I. Nesvizhskii and J. J. Rehr, J. Synchroton Rad., 6:315 (1999)
141. J. Luitz, M. Maier, C. Hébert, P. Schattschmeider, P. Blaha, K. Schwarz and B. Jouffrey, Eur. Phys. J. B., 21:363 (2001)
142. T. Mizoguchi, M. Yoshiya, J. Li, F. Oba, I. Tanaka and H. Adachi, Ultramicrosc., 86:363 (2001)
143. F. Kohan, G. Ceder and D. Morgan, Phys. Rev. B., 61(22):15019 (2000).
144. F. Oba, S. R. Nishitani, S. Isotani, H. Adachi and I. Tanaka, J. Appl. Phys., 90(2):824 (2001).
145. http://www.nims.go.jp/eng/
146. A. D. Yoffe, Adv. In Phys., 50(1):1 (2001)
147. Y. Kayanuma, Phys. Rev. B, 38:9797 (1985)
148. D. Pines, “Elementary Excitations in Solids”, Benjamin, New York (1963)
149. M. Mitome, Y. Yamazaki, H. Takagi and T. Nakagirl, J. Appl. Phys., 72(2):812 (1992)
150. P. E. Baston and J. R. Heath, Phys. Rev. Lett., 71(6):911 (1993)
151. R. Tsu, D. Babic, L. Ioriati Jr., J. Appl. Phys., 82(3):1327 (1997)
152. P. N. H. Nakashima, T. Tsuzuki and A. W. S. Johnson, J. Appl. Phys., 85(3):1556 (1999)
153. Y. K. Chang, H. H. Hsieh, W. F. Pong, M. H. Tsai, F. Z. Chien, P. K. Tseng, L. C. Chen, T. Y. Wang, K. H. Chen, D. M. Bhusari, J. R. Yang and S. T. Lin, Phys. Rev. Lett., 82:5377 (1999)
154. N-M. Park, C-J. Choi, T-Y, Seong and S-J. Park, Phys. Rev. Lett., 86:1355 (2001)
155. J. Hasen, L. N. Pfeiffer, A. Pinczuk, S. He, K. W. West and B. S. Dennis, Nature, 390(6):54 (1997)
156. M. S. Sander, R. Gronsky, Y. M. Lin and M. S. Dresselhaus, J. Appl. Phys., 89(5):2733 (2001)
157. W. S. Baer, Phys. Rev., 154(3):785 (1966)
158. J. Lagois, Phys. Rev. B, 23:5511 (1981)
159. L. E. Brus, J. Chem. Phys., 80(9):4403 (1984)
160. H. Yu, J. Li, R. A. Loomis, L. W. Wang and W. Buhro, Nature materials, 2:517 (2003)