簡易檢索 / 詳目顯示

研究生: 鍾榮育
Rong-Yu Choung
論文名稱: 胃幽門螺旋桿菌之菸鹼醯胺腺嘌呤雙核苷酸-啶黃素氧化還原酶(HP0642)功能分析研究
Functional Characterization of NAD(P)H:flavin Oxidoreductase (HP0642) from Helicobacter pylori
指導教授: 黃海美
Haimei Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 92
中文關鍵詞: HP0642菸鹼醯胺腺嘌呤雙核苷酸-啶黃素氧化還原酶硝基還原酶
外文關鍵詞: HP0642, NAD(P)H:flavin oxidoreductase, nitroreductase
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 重組HP0642蛋白已被建立於大腸桿菌(E. coli) SG13009表現系統(楊瑞榮 碩士論文, 2006)。這個蛋白質主要的功能有二,一是具有菸鹼醯胺腺嘌呤雙核苷酸-啶黃素氧化還原酶(NAD(P)H:flavin oxidoreductase)的酵素活性,二是硝基還原酶(nitroreductase)的酵素活性。在這篇論文中呈現in vitro及in vivo所檢測出HP0642蛋白質的特性及酵素活性。
    重組HP0642蛋白經由Ni-NTA管柱層析方法純化效率為10-12 mg/L E. coli,重組HP0642蛋白分子量為26.7 kDa。利用超高速離心法(ultracentrifugation)分析HP0642是以二聚體的方式存在。HP0642蛋白具有類似黃素蛋白(flavoprotein)的吸收光譜值。薄層色譜(Thin layer chromatography)實驗結果發現蛋白質HP0642利用FMN做為輔因子(co-factor),而非FAD。FMN與HP0642的含量比值經由螢光檢測出為0.5。
    抗HP0642的抗體血清經已由五次兔子注射實驗製備而成,利用西方點墨法(western blotting)可在1:5000稀釋倍率下測得HP0642蛋白。HP0642蛋白質表現量在3-24小時的H. pylori培養中並沒有差別;但在pH 5.5 的Brucella洋菜膠盤或Brucella broth培養兩小時,HP0642的蛋白質表現量會比在pH 7.2下提高約兩倍。
    利用測定NAD(P)H的消耗量來確認NAD(P)H:flavin oxidoreductase的活性,反應條件為使用10 □g HP0642在25℃、pH 8.5 50 mM的Tris-HCl緩衝溶液中反應三分鐘。NADPH oxidase活性的Km(NADPH)為6.4 ± 0.7 □M,Vmax(NADPH)為591.4 ± 27.2 □M•min-1•mg-1。NADH oxidase活性的Km(NADH)為37.5 ± 3.8 □M及Vmax(NADH)為318.0 ± 4.4 □M•min-1•mg-1。無論是利用NADPH或NADH作受質,額外加入flavin,可明顯增加HP0642的活性。而無論flavin的添加與否,NAD(P)H oxidase活性傾向利用NADPH,而非NADPH為受質。利用2-16 □M的FMN以及2-16 □M的NADPH為受質做出的酵素動力雙倒數圖形呈現交叉圖形,顯示此酵素利用順序式機制(sequential mechanism)進行催化反應。
    可經由測定nitrofurazone的消耗量來確認Nitroreductase的活性。反應條件為使用0.5 □g HP0642及NADPH在25℃ pH 8.5 50 □M Tris-HCl 緩衝溶液中反應三分鐘,固定NADPH量為100 □M,得知Km(NFZ)為3.4 ± 0.1 □M及Vmax(NFZ)為3181.3 ± 64.0 □M•min-1•mg-1;而固定nitrofurazone量為10 □M,得知Km(NADPH)為29.5 ± 2.4 □M及Vmax(NADPH)為2468.7 ± 20.3 □M•min-1•mg-1。添加FMN或FAD都不會增加酵素的活性,使用NADH為受質無法進行利用Nitroreductase的活性。1-3 □M的nitrofurazone以及25-200 □M的NADPH為受質做出的酵素動力論雙倒數圖形呈現平行線,表示此酵素活性利用乒乓機制(ping-pong mechanism)進行催化反應。
    NADP+以及lumichrome都可以抑制NADPH oxidase活性。NADPH oxidase活性並沒有兩價陽離子作為co-factor參與其中。蛋白質HP0642的兩個酵素活性在pH 7-9都可具有理想的活性,溫度穩定性的IC50為55℃,此溫度也符合蛋白質HP0642由圓二光圖譜(circular dichroism)測定出的Tm值。


    Recombinant HP0642 protein was obtained from gene cloning and expression in E. coli SG13009 system by Mr. Yang, Ray-Rong in 2006. Preliminary data indicated that this protein performed majority function as (1) NAD(P)H-flavin oxidoreductase activity and (2) NADPH-dependent nitroreductase activity according to various substrates. Further in vitro and in vivo characterization and kinetics determination of HP0642 protein are presented in this study.
    Purified rec-HP0642 protein from Ni-NTA super-flow column has a molecular weight of 26.7 kDa at the yield of 10-12 mg from per liter of E. coli culture. Analytical ultracentrifugation data indicated the purified protein forms a dimer. Purified protein exhibits a flavoprotein-like absorption spectrum. Thin layer chromatography results showed that the HP0642 protein contains FMN co-factor, but not FAD. Molar ratio of FMN and protein is 0.5 by fluorescence measurement along with separated FMN and FAD standard.
    The sera against rec-HP0642 protein had been produced in rabbits. The endogenous HP0642 of H. pylori was detected by western blotting with 1:5000 dilution of the 5th boost anti-serum. No difference in HP0642 protein expression from samples harvested from 3-24 h after re-plated cultures. However, HP0642 expression was about 2-fold up regulation on acidic (pH 5.5) Brucella agar plates or Brucella broth for 2 h.
    NAD(P)H oxidase and NAD(P)H:flavin oxidoreductase activity was confirmed by the consumption of NAD(P)H after incubating 10 □g HP0642 protein at 25℃ for 3 min in buffer containing 50 mM Tris-HCl (pH 8.5). The Km(NADPH) is 6.4 ± 0.7 □M and Vmax(NADPH) is 591.4 ± 27.2 □M•min-1•mg-1 for its NADPH oxidase activity. And, the Km(NADH) is 37.5 ± 3.8 □M and Vmax(NADH) is 318.0 ± 4.4 □M•min-1•mg-1 for its NADH oxidase activity. Extra addition of flavin (FMN, FAD or riboflavin) would significantly increase the rec-HP0642 enzyme activity in the presence of either NADPH or NADH substrate. NADPH preference to NADH was found as the substrate of the rec-HP0642 oxidase in spite of flavin addition or not. An intercepting pattern appeared in several Lineweaver-Burk plots in which were generated from enzyme reaction including 2-16 □M FMN and 2-16 □M NADPH substrates. This indicated that HP0642 NADPH:flavin oxidoreductase activity follows a sequential mechanism.
    Nitroreductase activity was confirmed by the consumption of nitrofurazone after incubating 0.5 □g HP0642 protein and NADPH, but not NADH at 25℃ for 3 min in 50 mM Tris-HCl (pH 8.5). The Km(NFZ) is 3.4 ± 0.1 □M and Vmax(NFZ) is 3181.3 ± 64.0 □M•min-1•mg-1 for its enzyme activity in the presence of 100 □M of NADPH. The Km(NADPH) is 29.5 ± 2.4 □M and Vmax(NADPH) is 2468.7 ± 20.3 □M•min-1•mg-1 for its enzyme activity in the presence of 10 □M of nitrofurazone. FMN or FAD addition would not increase the enzyme activity. A parallel pattern double-reciprocal plots showed in enzyme reactions including 1-3 □M Nitrofurazone and 25-200 □M NADPH substrates. This indicated that HP0642 nitroreductase activity follows a ping-pong mechanism.
    Either NADP+ or Lumichrome inhibited the NADPH oxidase activity. There is no divalent cation cofactor involve in the NADPH oxidase activity. ptimal pH range from 7 to 9 was observed either for HP0642 NADPH oxidase or nitroreductase activity. The IC50 of the thermal stability for either NADPH oxidase or nitroreductase activity is about 55℃. This temperature matched the Tm of the HP0642 protein from circular dichroism data.

    1.中文摘要…1 2. Abstract…3 3. Introduction…5 4. Materials and methods…11 5. Results…20 6. Discussion…32 7. References…39 8. Tables…43 9. Figures…51 10. Appendix…87

    Bruchhaus, I., S. Richter, and E. Tannich. 1998. Recombinant expression and biochemical characterization of an NADPH:flavin oxidoreductase from Entamoeba histolytica. Biochem J. 330 ( Pt 3):1217-21.
    Bryant, C., and M. DeLuca. 1991. Purification and characterization of an oxygen-insensitive NAD(P)H nitroreductase from Enterobacter cloacae. J Biol Chem. 266:4119-25.
    Covacci, A., J.L. Telford, G. Del Giudice, J. Parsonnet, and R. Rappuoli. 1999. Helicobacter pylori virulence and genetic geography. Science. 284:1328-33.
    Deller, S., S. Sollner, R. Trenker-El-Toukhy, I. Jelesarov, G.M. Gubitz, and P. Macheroux. 2006. Characterization of a thermostable NADPH:FMN oxidoreductase from the mesophilic bacterium Bacillus subtilis. Biochemistry. 45:7083-91.
    Dunn, B.E., H. Cohen, and M.J. Blaser. 1997. Helicobacter pylori. Clin Microbiol Rev. 10:720-41.
    Faeder, E.J., and L.M. Siegel. 1973. A rapid micromethod for determination of FMN and FAD in mixtures. Anal Biochem. 53:332-6.
    Fieschi, F., V. Niviere, C. Frier, J.L. Decout, and M. Fontecave. 1995. The mechanism and substrate specificity of the NADPH:flavin oxidoreductase from Escherichia coli. J Biol Chem. 270:30392-400.
    Fontecave, M., R. Eliasson, and P. Reichard. 1987. NAD(P)H:flavin oxidoreductase of Escherichia coli. A ferric iron reductase participating in the generation of the free radical of ribonucleotide reductase. J Biol Chem. 262:12325-31.
    Goodwin, A., D. Kersulyte, G. Sisson, S.J. Veldhuyzen van Zanten, D.E. Berg, and P.S. Hoffman. 1998. Metronidazole resistance in Helicobacter pylori is due to null mutations in a gene (rdxA) that encodes an oxygen-insensitive NADPH nitroreductase. Mol Microbiol. 28:383-93.
    Inouye, S. 1994. NAD(P)H-flavin oxidoreductase from the bioluminescent bacterium, Vibrio fischeri ATCC 7744, is a flavoprotein. FEBS Lett. 347:163-8.
    Jeffers, C.E., J.C. Nichols, and S.C. Tu. 2003. Complex formation between Vibrio harveyi luciferase and monomeric NADPH:FMN oxidoreductase. Biochemistry. 42:529-34.
    Jeong, J.Y., A.K. Mukhopadhyay, D. Dailidiene, Y. Wang, B. Velapatino, R.H. Gilman, A.J. Parkinson, G.B. Nair, B.C. Wong, S.K. Lam, R. Mistry, I. Segal, Y. Yuan, H. Gao, T. Alarcon, M.L. Brea, Y. Ito, D. Kersulyte, H.K. Lee, Y. Gong, A. Goodwin, P.S. Hoffman, and D.E. Berg. 2000. Sequential inactivation of rdxA (HP0954) and frxA (HP0642) nitroreductase genes causes moderate and high-level metronidazole resistance in Helicobacter pylori. J Bacteriol. 182:5082-90.
    Kobori, T., H. Sasaki, W.C. Lee, S. Zenno, K. Saigo, M.E. Murphy, and M. Tanokura. 2001. Structure and site-directed mutagenesis of a flavoprotein from Escherichia coli that reduces nitrocompounds: alteration of pyridine nucleotide binding by a single amino acid substitution. J Biol Chem. 276:2816-23.
    Lacy, B.E., and J. Rosemore. 2001. Helicobacter pylori: ulcers and more: the beginning of an era. J Nutr. 131:2789S-2793S.
    Lei, B., M. Liu, S. Huang, and S.C. Tu. 1994. Vibrio harveyi NADPH-flavin oxidoreductase: cloning, sequencing and overexpression of the gene and purification and characterization of the cloned enzyme. J Bacteriol. 176:3552-8.
    Liu, M., B. Lei, Q. Ding, J.C. Lee, and S.C. Tu. 1997. Vibrio harveyi NADPH:FMN oxidoreductase: preparation and characterization of the apoenzyme and monomer-dimer equilibrium. Arch Biochem Biophys. 337:89-95.
    Louie, T.M., H. Yang, P. Karnchanaphanurach, X.S. Xie, and L. Xun. 2002. FAD is a preferred substrate and an inhibitor of Escherichia coli general NAD(P)H:flavin oxidoreductase. J Biol Chem. 277:39450-5.
    Malfertheiner, P., K. McColl, F. Baldi, M. Dinelli, D. Festi, F. Parente, L. Ricciardiello, E. Roda, G. Scarpulla, V. Stanghellini, and G. Torre. 1997. Update on Helicobacter pylori research. Dyspepsia. Eur J Gastroenterol Hepatol. 9:624-5.
    Marshall, B.J., and J.R. Warren. 1984. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet. 1:1311-5.
    Merrell, D.S., M.L. Goodrich, G. Otto, L.S. Tompkins, and S. Falkow. 2003. pH-regulated gene expression of the gastric pathogen Helicobacter pylori. Infect Immun. 71:3529-39.
    Mostertz, J., C. Scharf, M. Hecker, and G. Homuth. 2004. Transcriptome and proteome analysis of Bacillus subtilis gene expression in response to superoxide and peroxide stress. Microbiology. 150:497-512.
    Niviere, V., F. Fieschi, J.L. Decout, and M. Fontecave. 1999. The NAD(P)H:flavin oxidoreductase from Escherichia coli. Evidence for a new mode of binding for reduced pyridine nucleotides. J Biol Chem. 274:18252-60.
    Nokhbeh, M.R., S. Boroumandi, N. Pokorny, P. Koziarz, E.S. Paterson, and I.B. Lambert. 2002. Identification and characterization of SnrA, an inducible oxygen-insensitive nitroreductase in Salmonella enterica serovar Typhimurium TA1535. Mutat Res. 508:59-70.
    Parkinson, G.N., J.V. Skelly, and S. Neidle. 2000. Crystal structure of FMN-dependent nitroreductase from Escherichia coli B: a prodrug-activating enzyme. J Med Chem. 43:3624-31.
    Peterson, D.R., and F.A. Carone. 1979. Renal regeneration following d-serine induced acute tubular necrosis. Anat Rec. 193:383-8.
    Race, P.R., A.L. Lovering, R.M. Green, A. Ossor, S.A. White, P.F. Searle, C.J. Wrighton, and E.I. Hyde. 2005. Structural and mechanistic studies of Escherichia coli nitroreductase with the antibiotic nitrofurazone. Reversed binding orientations in different redox states of the enzyme. J Biol Chem. 280:13256-64.
    Russell, T.R., and S.C. Tu. 2004. Aminobacter aminovorans NADH:flavin oxidoreductase His140: a highly conserved residue critical for NADH binding and utilization. Biochemistry. 43:12887-93.
    Seo, D., K. Kamino, K. Inoue, and H. Sakurai. 2004. Purification and characterization of ferredoxin-NADP+ reductase encoded by Bacillus subtilis yumC. Arch Microbiol. 182:80-9.
    Streker, K., C. Freiberg, H. Labischinski, J. Hacker, and K. Ohlsen. 2005. Staphylococcus aureus NfrA (SA0367) is a flavin mononucleotide-dependent NADPH oxidase involved in oxidative stress response. J Bacteriol. 187:2249-56.
    Tanner, J.J., S.C. Tu, L.J. Barbour, C.L. Barnes, and K.L. Krause. 1999. Unusual folded conformation of nicotinamide adenine dinucleotide bound to flavin reductase P. Protein Sci. 8:1725-32.
    Thomsen, L.L., J.B. Gavin, and C. Tasman-Jones. 1990. Relation of Helicobacter pylori to the human gastric mucosa in chronic gastritis of the antrum. Gut. 31:1230-6.
    Tomb, J.F., O. White, A.R. Kerlavage, R.A. Clayton, G.G. Sutton, R.D. Fleischmann, K.A. Ketchum, H.P. Klenk, S. Gill, B.A. Dougherty, K. Nelson, J. Quackenbush, L. Zhou, E.F. Kirkness, S. Peterson, B. Loftus, D. Richardson, R. Dodson, H.G. Khalak, A. Glodek, K. McKenney, L.M. Fitzegerald, N. Lee, M.D. Adams, E.K. Hickey, D.E. Berg, J.D. Gocayne, T.R. Utterback, J.D. Peterson, J.M. Kelley, M.D. Cotton, J.M. Weidman, C. Fujii, C. Bowman, L. Watthey, E. Wallin, W.S. Hayes, M. Borodovsky, P.D. Karp, H.O. Smith, C.M. Fraser, and J.C. Venter. 1997. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature. 388:539-47.
    Wen, Y., E.A. Marcus, U. Matrubutham, M.A. Gleeson, D.R. Scott, and G. Sachs. 2003. Acid-adaptive genes of Helicobacter pylori. Infect Immun. 71:5921-39.
    Xu, Y., M.W. Mortimer, T.S. Fisher, M.L. Kahn, F.J. Brockman, and L. Xun. 1997. Cloning, sequencing, and analysis of a gene cluster from Chelatobacter heintzii ATCC 29600 encoding nitrilotriacetate monooxygenase and NADH:flavin mononucleotide oxidoreductase. J Bacteriol. 179:1112-6.
    Zenno, S., H. Koike, A.N. Kumar, R. Jayaraman, M. Tanokura, and K. Saigo. 1996a. Biochemical characterization of NfsA, the Escherichia coli major nitroreductase exhibiting a high amino acid sequence homology to Frp, a Vibrio harveyi flavin oxidoreductase. J Bacteriol. 178:4508-14.
    Zenno, S., H. Koike, M. Tanokura, and K. Saigo. 1996b. Conversion of NfsB, a minor Escherichia coli nitroreductase, to a flavin reductase similar in biochemical properties to FRase I, the major flavin reductase in Vibrio fischeri, by a single amino acid substitution. J Bacteriol. 178:4731-3.
    Zenno, S., H. Koike, M. Tanokura, and K. Saigo. 1996c. Gene cloning, purification, and characterization of NfsB, a minor oxygen-insensitive nitroreductase from Escherichia coli, similar in biochemical properties to FRase I, the major flavin reductase in Vibrio fischeri. J Biochem (Tokyo). 120:736-44.
    Zenno, S., and K. Saigo. 1994. Identification of the genes encoding NAD(P)H-flavin oxidoreductases that are similar in sequence to Escherichia coli Fre in four species of luminous bacteria: Photorhabdus luminescens, Vibrio fischeri, Vibrio harveyi, and Vibrio orientalis. J Bacteriol. 176:3544-51.
    Zenno, S., K. Saigo, H. Kanoh, and S. Inouye. 1994. Identification of the gene encoding the major NAD(P)H-flavin oxidoreductase of the bioluminescent bacterium Vibrio fischeri ATCC 7744. J Bacteriol. 176:3536-43.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE