研究生: |
翁士閔 Weng, Shih-Min |
---|---|
論文名稱: |
V頻段適應性偏壓功率放大器暨利用預先失真技巧之線性器設計 Design of V-band Adaptively Biased Power Amplifier with Pre-Distortion Linearizer |
指導教授: |
劉怡君
Liu, Yi-Chun |
口試委員: |
謝秉璇
Hsieh, Ping-Hsuan 李俊興 Li, Chun-Hsing |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 164 |
中文關鍵詞: | 適應性偏壓 、互補式金屬氧化物半導體 、微波 、功率合成 、預先失真之線性器 、V頻段 |
外文關鍵詞: | adaptive bias, CMOS, millimeter-wave, power combining, predistortion linearizer, V-band |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於人們在2.4 GHz和5 GHz通訊系統上的應用日漸趨於飽和, 人們漸漸將操作頻率提高至毫米波頻段以求更高速的資料傳輸。而60-GHz系統應用憑藉著易衰減與寬頻的特性,使之能廣泛地應用在無線區域網路(WLAN)、無線個人區域網路(WPAN),以及點對點資料傳輸。由於功率放大器高功率損耗以及較高的設計困難度,在這些通訊系統應用中,功率放大器往往是最重要的子電路。本篇論文提出在功率放大器中較常用到的線性化技巧,以改善功率放大器的特性。
本論文中共有三個功率放大器的設計,第一個設計中加入補償電容改善電晶體的米勒效應(Miller effect)以及利用電流合成技術提升輸出功率。第一個設計具有15.6 dB的線性增益、15%的最大功率附加效率(PAE)與17 dBm的飽和輸出功率(Psat)。在第二個設計中,為改善功率放大器的線性度以及輸出功率,在本設計中加入了利用預先失真技巧之線性器和4路並串聯共用之功率合成器。在量測結果中,其具有12.9 dB的線性增益、12.1 dBm的1-dB輸出功率壓縮點以及3.9%的最大功率附加效率。根據第二個設計的主架構電路,在第三個設計中加入適應性偏壓電路針對功率放大器操作在小訊號時的功率損耗做改善,同時並不會影響到在大訊號時的輸出功率。根據量測結果,此功率放大器在線性器和適應性偏壓電路打開的情況下,1-dB輸出功率點可以從17.7 dBm提升至18.9 dBm,而此點的功率附加效率也從7%提升至13.9%。而線性度的量測結果顯示,在線性器與適應性偏壓電路的作用下,三階輸入交叉點(IIP3)也從2.6 dBm提升至5.1 dBm。
Since the applications in microwave bands have become saturated (2.4 GHz and 5 GHz), people start to shift up the operating frequency to millimeter-wave frequency bands. Thanks to the high attenuation and wide bandwidth properties of 60 GHz band, various applications such as WLANs, WPANs, and point-to-point links are developed. In these communication systems, power amplifier is one of the most important building blocks because it is the most power hungry component and difficult to design. This thesis presents some linearization techniques to save the power consumption of PA without degrading the output power.
There are three works in this thesis. In Work A, to mitigate Miller effect and enhance the output power, a neutralization and current combining techniques are used. It achieves a simulated linear gain of 15.6 dB, a maximum power-added efficiency (PAE) of 15%, and a saturation output power (Psat) of 17 dBm. In Work B, a pre-distortion linearizer and 4-way parallel-series combiner are added to further improve the linearity and output power. In the measurement results, the linear gain is 12.9 dB, OP1dB is 12.1 dBm, and PAEpeak is 3.9% when the linearizer is on. Based on the structure of Work B, an adaptive bias network is added in Work C to save the power consumption at low power mode, and provide sufficient output power at high power mode. According to the measurement results, OP1dB is improved from 17.7 dBm to 18.9 dBm, and PAE at OP1dB enhanced 6.9% (from 7% to 13.9%) when the linearizer and adaptive bias networks are on. In two-tone measurement, a 2.5 dB extension of IIP3 is presented (from 2.6 dBm to 5.1 dBm).
[1] ITU-R, "Attenuation by atmospheric gases," in ITU-R Rec, Geneva, 2005, pp. 676-6.
[2] Rohde & Schwarz, "802.11ad - WLAN at 60 GHz," White Paper WLAN 802.11ad ─ 1MA220_2e, 2013.
[3] FCC, "Use of Spectrum Bands Above 24 GHz For Mobile Radio Services, et al," FCC 16-89, 2016.
[4] MIC, "Woking Class of 60 GHz Band Wireless Device," 2015. [Online]. Available: http://www.soumu.go.jp/main_sosiki/joho_tsusin/policyreports/joho_tsusin/idou
/60ghz.html.
[5] ETSI, "Broadband Radio Access Networks (BRAN); 60 GHz Multiple-Gigabit WAS/RLAN Systems; Harmonized EN covering the essential requirements of article 3.2 of the R&TTE Directive," ETSI EN 302 567 v2.0.22, 2016.
[6] S. Jiang, J. Peng, Z. Lu, J. Jiao and S. Jiang, "802.11ad Key Performance Analysis and Its Application in Home Wireless Entertainment," IEEE International Conference on Computational Science and Engineering, pp. 1595-1598, 2014.
[7] W. L. Chen and J. R. Long, "A 58–65 GHz Neutralized CMOS Power Amplifier With PAE Above 10% at 1-V Supply," IEEE J. Solid-State Circuits, vol. 45, no. 3, pp. 554-564, Mar. 2010.
[8] Y.-H. Hsiao, Z.-M. Tsai, H.-C. Liao, J.-C. Kao and H. Wang, "Millimeter-Wave CMOS Power Amplifiers With High Output Power and Wideband Performances," IEEE Trans. Microw. Theory Techn., vol. 61, no. 12, pp. 4520-4533, Dec. 2013.
[9] J.-F. Yeh, J.-H. Tsai and T.-W. Huang, "A 60-GHz Power Amplifier Design Using Dual-Radial Symmetric Architecture in 90-nm Low-Power CMOS," IEEE Trans. Microw. Theory Techn., vol. 61, no. 3, pp. 1280-1290, Mar. 2013.
[10] C.-F. Chou, Y.-H. Hsiao, Y.-C. Wu, Y.-H. Lin, C.-W. Wu and H. Wang, "Design of a V-Band 20-dBm Wideband Power Amplifier Using Transformer-Based Radial Power Combining in 90-nm CMOS," IEEE Trans. Microw. Theory Techn., vol. 64, no. 12, pp. 4545-4560, Dec. 2016.
[11] J. Chen and A. M. Niknejad, "A compact 1V 18.6dBm 60GHz power amplifier in 65nm CMOS," IEEE International Solid-State Circuits Conference, pp. 432-433, 2011.
[12] S. Cripps, RF Power Amplifiers for Wireless Communications, 2 ed., Norwood, MA: Artech House, 2006.
[13] B. Razavi, RF microelectronics, 2 ed., Prentice Hall, 2012.
[14] G. Haitao, On-chip Transformer modeling, Characterization, and Applications in Power and Low Noise Amplifiers., 2006.
[15] I. Aoki, S. Kee, D. Rutledge and A. Hajimiri, "Distributed active transformer—A new power-combining and impedance-transformation technique," IEEE Trans. Microw. Theory Tech., vol. 50, no. 1, pp. 316-331, Jan. 2002.
[16] B. Leite, Design and Modeling of mm-wave integrated transformers in CMOS and BiCMOS technologies, Bordeaux I, 2011.
[17] J. R. Long, "Monolithic transformers for silicon RF IC design," IEEE J. Solid-State Circuits, vol. 35, no. 9, pp. 1368-1382, Sep. 2000.
[18] A. Katz, "Linearization: reducing distortion in power amplifiers," IEEE Microwave Magazine, vol. 2, no. 4, pp. 37-49, Dec 2001.
[19] K. Y. Kao, Y. C. Hsu, K. W. Chen and K. Y. Lin, "Phase-Delay Cold-FET Pre-Distortion Linearizer for Millimeter-Wave CMOS Power Amplifiers," IEEE Trans. Microw. Theory Techn., vol. 61, no. 12, pp. 4505-4519, Dec. 2013.
[20] J. H. Tsai, H. Y. Chang, P. S. Wu, Y. L. Lee, T. W. Huang and H. Wang, "Design and analysis of a 44-GHz MMIC low-loss built-in linearizer for high-linearity medium power amplifiers," IEEE Trans. Microw. Theory Techn., vol. 54, no. 6, pp. 2487-2496, June 2006.
[21] J. H. Tsai, C. H. Wu, H. Y. Yang and T. W. Huang, "A 60 GHz CMOS Power Amplifier With Built-in Pre-Distortion Linearizer," IEEE Microwave and Wireless Components Letters, vol. 21, no. 12, pp. 676-678, Dec. 2011.
[22] T. Y. Huang, Y. H. Lin and H. Wang, "A K-Band Adaptive-Bias Power Amplifier with Enhanced Linearizer Using 0.18-μm CMOS Process," IEEE MTT-S Int. Microw. Symp. Dig., pp. 1-3, May 2015.
[23] C. Y. Law and A.-V. Pham, "A high-gain 60GHz power amplifier with 20dBm output power in 90nm CMOS," IEEE International Solid-State Circuits Conference, pp. 426-427, 2010.
[24] J. Oh, B. Ku and S. Hong, "A 77-GHz CMOS Power Amplifier With a Parallel Power Combiner Based on Transmission-Line Transformer," IEEE Trans. Microw. Theory Techn., vol. 61, no. 7, pp. 2662-2669, July 2013.
[25] Q. J. Gu, Z. Xu and M. C. F. Chang, "Two-Way Current-Combining W-Band Power Amplifier in 65-nm CMOS," IEEE Trans. Microw. Theory Techn., vol. 60, no. 5, pp. 1365-1374, May 2012.
[26] D. Zhao and P. Reynaert, "A 40-nm CMOS E-Band 4-Way Power Amplifier With Neutralized Bootstrapped Cascode Amplifier and Optimum Passive Circuits," IEEE Trans. Microw. Theory Techn., vol. 63, no. 12, pp. 4083-4089, Dec. 2015.
[27] D. Zhao and P. Reynaert, "An E-Band Power Amplifier With Broadband Parallel-Series Power Combiner in 40-nm CMOS," IEEE Trans. Microw. Theory Techn., vol. 63, no. 2, pp. 683-690, Feb. 2015.
[28] Y.-C. Chen, Y.-T. Chang and H.-C. Lu, "A K-Band Power Amplifier with Parasitic Diode Linearizerin 0.18-μm CMOS Process Using 1.8-V Supply Voltage," in Proc. IEEE Radio Freq. Integr. Technology (RFIT), 2016.
[29] H. Zhang and Q. Xue, "60-GHz CMOS Current-Combining PA With Adaptive Back-Off PAE Enhancement," IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 63, no. 9, pp. 823-827, Sept. 2016.
[30] Y.-H. Hsiao, H.-C. Liao, J.-C. Kao and H. Wang, "A V-Band Power Amplifier with Adaptive Bias Circuit to Save Quiescent DC Power Consumption Using 90-nm CMOS Technology," in 2014 Asia-Pacific Microwave Conf. (APMC), 2014.
[31] J. Y.-C. Liu, C.-T. Chan and S. S. H. Hsu, "A K-Band Power Amplifier with Adaptive Bias in 90-nm CMOS," in 9th European Microwave Integrated Circuit Conf. (EuMIC), 2014.
[32] T.-C. Tsai, K.-Y. Kao and K.-Y. Lin, "A K-band CMOS power amplifier with FET-type adaptive-bias circuit," Asia-Pacific Microwave Conference, pp. 591-593, 2014.
[33] J. Y.-C. Liu, A. Tang, N. Y. Wang, Q. J. Gu, R. Berenguer, H. H. Hsieh, P. Y. Wu, C. Jou and M. C. F. Chang, "A V-band self-healing power amplifier with adaptive feedback bias control in 65 nm CMOS," IEEE Radio Frequency Integrated Circuits Symposium, pp. 1-4, 2011.