簡易檢索 / 詳目顯示

研究生: 盧明昌
Ming-Chan Lu
論文名稱: 氮化鎵、氧化鎵、氮氧化鎵,奈米結構之製造與特性分析
Growth of Ga-Related Semiconductor Nanostructures
指導教授: 陳力俊
Lih-Juann Chen
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 172
中文關鍵詞: 氮化鎵氧化鎵奈米結構
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 一維奈米結構如奈米線、奈米管因為它們獨特的光性、電性和機械性質而引發廣泛的興趣和研究。一維奈米材料特殊的結構性質可以有效率地提升傳輸電性載子的性能,而且這些一維結構非常適合在奈米積體電路上傳輸載子。再者一維奈米結構也具備元件的功能,所以這種一維奈米結構可以在奈米積體電路中當做接線和元件的應用。
    三-五族氮化物(如氮化鎵、氮化鎵銦、氮化鎵鋁)都是具有較大能隙的材料,可以應用在光子晶體和電子元件上;例如:在藍光和紫外光範圍的LED應用。氮化鎵是直接能隙的半導體材料,它的能隙是3.4 eV,而且氮與鎵之間的鍵結是非常強的鍵結。由於這種強鍵結的特性使得氮化鎵可以應用在綠、藍和紫外光區範圍的光電材料。
    在此論文中,我們專門討論與鎵相關的半導體化合物之奈米結構的製造與其特性分析。此論文包含了下面六個主題: (1) 探討利用有機金屬化學氣相沉積法來合成氮化鎵奈米線的過程,(2) 探討在不需要模板的輔助下利用有機金屬化學氣相沉積法來合成氮化鎵管狀奈米結構,(3) 探討利用有機金屬化學氣相沉積法來製造氮化鎵/碳管/矽/氧化矽 四層結構的奈米纜線,(4) 高產量合成含鎵三元相化合物/碳管 的奈米纜線,(5) 有關含鎵三元相化合物/碳管 奈米纜線的熱性質探討;(6) 利用單一合成步驟來成長立方晶體結構的氮化鎵/碳管 奈米纜線。


    One-dimensional nanostructures, such as nanowires and nanotubes, have attracted great attention because of their peculiar optical, electrical and mechanical properties. 1D nanostructures illustrate the smallest dimension structure that can be efficiently transport electrical carriers, and thus are ideally suited to the critical and ubiquitous task of moving charges in integrated nanoscaled systems. Second, 1D nanostructures can also exhibit device function, and thus can be exploited as both the wiring and device elements in architectures for functional nanosystems.
    III-V nitrides (GaN, InGaN, AlGaN) are promising wide bandgap materials for photonic and electronic device applications such as LEDs in blue and ultraviolet regions. Gallium nitride is a direct and wide-band-gap (3.4 eV) semiconductor possessing very strong Ga-N bonds. These and some other features make this compound almost an ideal material for green/blue/ultraviolet optoelectronics.
    The present thesis focused on the synthesis and characterization of nanostructures of the Ga-related components. The thesis includes the following topics: (1) growth processes of GaN nanowires synthesized by metalorganic chemical vapor deposition, (2) template-free synthesis of tubular nanostructures by metalorganic chemical vapor deposition, (3) synthesis of GaN/CNT/Si/SiOx nanocables by metalorganic chemical vapor deposition, (4) high yield synthesis of Ga-containing oxide/CNT nanocables, (5) thermal properties of Ga-containing oxide/CNT nanocables; and (6) one-step growth of zinc blend GaN@carbon nanotube nanocables.

    Contents Contents I Acknowledgments V List of Acronyms and Abbreviations VI Abstract VIII Chapter 1. Introduction 1.1 Nanotechnology 1 1.2 One-Dimensional Building Blocks 3 1.3 Vapor-Liquid-Solid Growth Mechanism 6 1.4 Surface Diffusion Growth Mechanism 8 1.5 Vapor-Solid Growth Mechanism 10 1.6 Properties of GaN 11 1.7 Carbon Nanotubes 14 1.8 Applications of Coaxial Nanocables 17 Chapter 2. Experimental Procedures 2.1 Sample Preparation 20 2.2 High-Vacuum Furnace Setup 20 2.3 Preparation of Samples for Transmission Electron Microscope Examination 2.3.1 Preparation of Planview Sample 23 2.3.2 Cross-Sectional Specimen Preparation 24 2.4 Transmission Electron Microscope (TEM) Observation 25 2.5 Scanning Electron Microscope (SEM) Observation 25 2.6 Energy Dispersion Spectrometer (EDS) Analysis 26 2.7 Electron Energy Loss Spectrometer (EELS)Analysis 26 2.8 Raman Microscope Examination 27 2.9 Field Emission Spectroscope Measurement 27 Chapter 3. Growth Processes of GaN Nanowires Synthesized by Metalorganic Chemical Vapor Deposition 3.1 Motivation 30 3.2 Experimental Procedures 30 3.3 Results and Discussion 32 3.4 Summary and Conclusions 35 Chapter 4. Template-Free Synthesis of Tubular Nanostructures by Metalorganic Chemical Vapor Deposition 4.1 Motivation 37 4.2 Experimental Procedures 37 4.3 Results and Discussion 38 4.4 Summary and Conclusions 41 Chapter 5. Synthesis of GaN/CNT/SiOx Nanocables by Metalorganic Chemical Vapor Deposition 5.1 Motivation 43 5.2 Experimental Procedures 44 5.3 Results and Discussion 45 5.4 Summary and Conclusions 51 Chapter 6. High Yield Synthesis of Ga-Containing Oxide/Carbon Nanotube Nanocables 6.1 Motivation 53 6.2 Experimental Procedures 54 6.3 Results and Discussion 55 6.4 Summary and Conclusions 61 Chapter 7. Thermal Properties of Ga-Containing Oxide/ Carbon Nanotube Nanocables 7.1 Motivation 62 7.2 Experimental Procedures 63 7.3 Results and Discussion 64 7.4 Summary and Conclusions 70 Chapter 8. One-Step Growth of Zinc Blend GaN@Carbon Nanotube Nanocables 8.1 Motivation 71 8.2 Experimental Procedures 73 8.3 Results and Discussion 74 8.4 Summary and Conclusions 78 Chapter 9. Summary and Conclusions 9. Summary and Conclusions 80 Chapter 10. Future Prospects 10. Future Prospects 83 References 87 Figure Captions 122 Figures 130

    References:

    1.1 G. Timp, “Nanotechnology,” Springer-Verlag, New York (1999)
    1.2 .C. N. R. Rao, A. Muller, A. K. Cheetham, “The Chemistry of Nanomaterials,” Wiley-VCH Verlag GmbH & Co. KGaA (2004).
    1.3 Jon A. McCleverty, Thomas J. Meyer, “Comprehensive Coordination Chemistry II: from Biology to Nanotechnology,” Elsevier Pergamon, Boston (2004).
    1.4 Richard R.H. Coombs and Dennis W. Robinson, “Nanotechnology in Medicine and the Biosciences,” Gordon and Breach Publishers (1996).
    1.5 P. Alivisatos, “Semiconductor Clusters, Nanocrystals, and Quantum Dots,” Science 271, pp. 933-934 (1999).
    1.6 J. M. Krans, J. M. van Rutenbeek, L. J. de Jongh, “The Signature of Conductance Quantization in Metallic Point Contacts,” Nature 375, pp. 767-768 (1995).
    1.7 Effendi Leobandung, Lingjie Guo, Yu Wang and Stephen Y. Chou, “Observation of Quantum Effects and Coulomb Blockade in Silicon Quantum-dot Transistors at Temperature over 100K,” Appl. Phys. Lett. 67, pp. 938-940 (1995).
    1.8 G. Markovich, C. P. Collier, J. R. Heath, “Architectonic Quantum Dot Solids,” Acc. Chem. Res. 32, pp. 415-423 (1999).
    1.9 M. F. Crommie, C. P. Lutz, D. M. Eigler, “Confinement of Electrons to Quantum Corrals on A Metal-surface,” Science 262, pp. 218-219 (1993).
    1.10 G. E. Moor, “Cramming More Components onto Integrated Circuits,” Electronics 38 (1965).
    1.11 C. Ross, “Shape, Orientation and Surface Structure of Si and Ge Nano-Particles Grown on SiN,” Annu. Rev. Mater. Sci. 31, pp. 203-235 (2001).
    1.12 D. L. Klein, R. Roth, A. K. L. Lim and A. P. Alivisatos, “A Single-Electron Transistor Made from a Cadmium Selenide Nanocrystal,” Nature 389, pp. 699-701 (1997).
    1.13 H. Park, A. K. L. Lim, A. P. Alivisatos, “Fabrication of Metallic Electrodes with Nanometer Separation by Electromigration,” Appl. Phys. Lett. 75, pp. 301-303 (1999).
    1.14 F. Cerrina, C. Marrian, “A Path to Nanolithography,” MRS Bull. December, pp. 56-62 (1996).
    1.15 J. M. Gibson, “Reading and Writing with Electron Beams,” Phys. Today October, 50, pp. 56-61 (1997).
    1.16 S. H. Hong, J. Zhu, C. A. Mirkin, “Multiple Ink Nanolithography: Toward a Multiple-Pen Nano-Plotter,” Science 286, pp. 523-525 (1999).
    1.17 C. B. Murray, C. B. Kagan, “Synthesis and Characterization of Monodisperse Nanocrystals and Close-Packed Nanocrystal Assemblies,” Ann. Rev. Mater. Sci. 30, pp. 523-543 (2000).
    1.18 R. S. Wagner and W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Crystal Growth,”, Appl. Phys. Lett. 4, pp. 89-90 (1964).
    1.19 X. F. Duan, C. M. Lieber, “General Synthesis of Compound Semiconductor Nanowires,” Adv. Mater. 12, pp. 298-302 (2000).
    1.20 M. Morales, C. M. Lieber, “A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires,” Science 279, pp. 208-211 (1998).
    1.21 Y. Wu, P. Yang, “Germanium Nanowire Growth via Simple Vapor Transport,” Chem. Mater. 12, pp. 605-607 (2000).
    1.22 Y. J. Zhang, Q. Zhang, N. L. Wang, “Synthesis of Thin Si Whiskers (Nanowires) Using SiCl4,” J. Cryst. Growth 226, pp. 185-191 (2001).
    1.23 Y. Wu, P. Yang, “Direct Observation of Vapor-Liquid-Solid Nanowire Growth,” J. Am. Soc. 123, pp. 3165-3166 (2001).
    1.24 Y. Wu, P. Yang, “Germanium Nanowire Growth via Simple Vapor Transport,” Chem. Mater. 12, pp. 605-607 (2000).
    1.25 C. C. Chen, C. C. Yeh, C. H. Chen, “Catalytic Growth and Characterization of Gallium Nitride Nanowires,” J. Am. Chem. Soc. 123, pp. 2791-2798 (2001).
    1.26 Y. W. Wang, L. D. Zhang, C. H. Liang, “Catalytic Growth and Photoluminescence Properties of Semiconductor Single-Crystal ZnS Nanowires,” Chem. Phys. Lett. 357, pp. 314-318 (2002).
    1.27 Y. J. Chen, J. B. Li, Y. S. Han, “The Effect of Mg Vapor Source on the Formation of MgO Whiskers and Sheets,” J. Cryst. Growth 245, pp. 163-170 (2002).
    1.28 S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, M. Sano, K. Chocho, “InGaN/GaN/AlGaN-Based Laser Diodes with Modulation-Doped Strained-Layer Superlattices Grown on an eEpitaxially Laterally Overgrown GaN Substrate,” Appl. Phys. Lett. 72, pp. 211-213 (1998).
    1.29 Zheng Wei Pan, Zu Rong Dai, and Zhong Lin Wang, “Nanobelts of Semiconducting Oxides,” Science, 291, pp. 1947-1949 (2001).
    1.30 H.Z. Zhang, Y.C. Kong, Y.Z. Wang, X. Du, Z.G. Bai, J.J. Wang, D.P. Yu, Y. Ding, Hang, “Ga2O3 Nanowires Prepared by Physical Evaporation,” Solid State Comm. 109, pp. 677-682 (1999).
    1.31 X.C. Wu, W.H. Song, W.D. Huang, M.H. Pu, B. Zhao, Y.P. Sun, J.J. Du, “Crystalline Gallium Oxide Nanowires: Intensive Blue Light Emitters,” Chem. Phys. Lett. 328, pp. 5-9 (2000).
    1.32 Z.R. Dai, Z.W. Pan, Z.L. Wang, “Ultra-Long Single Crystalline Nanoribbons of Tin Oxide,” Solid State Comm. 118, pp. 351-354 (1999).
    1.33 Z.G. Bai, D.P. Yu, H.Z. Zhang, Y. Ding, Y.P. Wang, X.Z. Gai, Q.L. Hang, G.C. Xiong, S.Q. Feng, “Nano-Scale GeO2 Wires Synthesized by Physical Evaporation,” Chem. Phys. Lett. 303, pp. 311-314 (1999).
    1.34 X.C. Wu, W.H. Song, W.D. Huang, M.H. Pu, B. Zhao, Y.P. Sun, J.J. Du, “Crystalline Gallium Oxide Nanowires: Intensive Blue Light Emitters,” Chem. Phys. Lett. 328, pp. 5-9 (2000).
    1.35 O. Brandt, H. Yang, H.r Kostial, and K. H. Ploog, “High p-Type Conductivity in Cubic GaN/GaAs(113)A by Using Be as the Acceptor and O as the Codopant”, Appl. Phys. Lett. 69, pp. 2707-2709 (1996).
    1.36 T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, “Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors,” Science, 287, pp. 1019-1022 (2000).
    1.37 S. Dhara, A. Datta, C. T. Wu, Z. H. Lan, K. H. Chen, Y. L. Wang, C. W. Hsu, C. H. Shen, L. C. Chen and C. C. Chen, “Hexagonal-to-Cubic Phase Transformation in GaN Nanowires by Ga+ Implantation,” Appl. Phys. Lett. 84, pp. 5473-5475 (2004).
    1.38 Y.K. Song, M. Kuball, A.V. Nurmikko, G.E. Bulman, K. Doverspike, S. T. Shappard, T.W. Weeks, M. Leonard, H.S. Kong, H. Dieringer and J. Edmonds, “Gain Characteristics of InGaN/GaN Quantum Well Diode Lasers,” Appl. Phys. Lett. 72, pp. 1418-1420 (1998).
    1.39 S. Porowski, I. Grzegory and J. Jun, “High Pressure Chemical Synthesis,” Elsevier, Amsterdam (1989).
    1.40 Pakula K., Wysmolek A., Korona K. P., Baranowski J. M., Stepniewski R., Grzegory I., Bockowski M., Jun J., Krukowski S., Wrblewski M. and Porowski S., Proc. of NATO Advanced Research Workshop HEAD 95, Smolenice, Slovakia, in press.
    1.41 Teisseyre G., Karczewski G., Kamp M., Meyer M., Leszczynski M., Grzegory I., Bockowski M. and Porowski S., unpublished.
    1.42 Perlin P., Suski T., Teisseyre H., Leszczynski M., Grzegory I., Jun J., Porowski S., Boguslawski P., Bernholc J., Chervin J. V., Polian A. and Moustakas T. D., “Towards the Identification of the Dominant Donor in GaN,” Phys. Rev. Lett., 75 pp. 296-299 (1995).
    1.43 Weiqiang Han, Shoushan Fan, Qunqing Li, Yongdan Hu, “Synthesis of Gallium Nitride Nanorods Through a Carbon Nanotube-Confined Reaction,” Science 277, pp. 1287-1289 (1997).
    1.44 P. M. Ajayan, O. Stephan, Ph. Redlich & C. Colliex, “Carbon Nanotubes as Removable Templates for Metal Oxide Nanocomposites and Nanostructures,” Nature, 375, pp. 564-567 (1995).
    1.45 W. Han, A. Zettl, “An Efficient Route to Graphitic Carbon-Layer-Coated Gallium Nitride Nanorods,” Adv. Mater. 14, pp. 1560-1562 (2002).
    1.46 Zhen Yao, Henk W. Ch. Postma, Leon Balents, Cees Dekker, “Carbon Nanotube Intramolecular Junctions,” Nature, 402, pp. 273-276 (1999).
    1.47 Mark S. Gudiksen, Lincoln J. Lauhon, Jianfang Wang, David C. Smith, Charles M. Lieber, “Growth of Nanowire Superlattice Structures for Nanoscale Photonics and Electronics,” Nature, 415, pp. 617-620 (2002).
    1.48 Jiangtao Hu, Min Ouyang, Peidong Yang, Charles M. Lieber, “Controlled Growth and Electrical Properties of Heterojunctions of Carbon Nanotubes and Silicon Nanowires,” Nature, 399, pp. 48-51 (1999).
    1.49 Lincoln J. Lauhon, Mark S. Gudiksen, Deli Wang, Charles M. Lieber, “Epitaxial Core-Shell and Core/Multi-Shell Nanowire Heterostructures,” Nature, 420, pp. 57-61 (2002).
    1.50 Heon-Jin Choi, Justin C. Johnson, Rongrui He, Sang-Kwon Lee, Franklin Kim, Peter Pauzauskie, Joshua Goldberger, Richard J. Saykally, and Peidong Yang, “Self-Organized GaN Quantum Wire UV Lasers,” J. Phys. Chem. B, 107, pp. 8721-8725 (2003).
    1.51 N.I. Kovtyukhova, T.E. Mallouk, T.S. Mayer, “Templated Surface Sol-Gel Synthesis of SiO2 Nanotubes and SiO2-Insulated Metal Nanowires,” Adv. Mater. 15, pp. 780-785 (2003).
    1.52 Dmitri Golberg, Yoshio Bando, Keita Fushimi, Masanori Mitome, Laure Bourgeois, and Cheng-Chun Tang, “Nanoscale Oxygen Generators: MgO2-Based Fillings of BN Nanotubes,” J. Phys. Chem. B, 107, pp. 8726-8729 (2003).
    1.53 Yan Qiu Zhu, Wei Bing Hu, Wen Kuang Hsu, Mauricio Terrones, Nicole Grobert, Turgay Karali, Humberto Terrones, Jonathan P. Hare, Peter D. Townsend, Harold W. Kroto, David R. M. Walton, “A Simple Route to Silicon-Based Nanostructures,” Adv. Mater. 11, pp. 844-847 (1999).
    1.54 Y.-C. Zhu, Y. Bando, L.-W. Yin, “Design and Fabrication of BN-Sheathed ZnS Nanoarchitectures,” Adv. Mater. 16, pp. 331-334 (2004).
    1.55 W. S. Shi, H. Y. Peng, L. Xu, N. Wang, Y. H. Tang, S. T. Lee, “Coaxial Three-Layer Nanocables Synthesized by Combining Laser Ablation and Thermal Evaporation,” Adv. Mater. 12, pp. 1927-1930 (2000).
    1.56 Y. B. Li, Y. Bando, D. Golberg, and Y. Uemura, “SiO2-Sheathed InS Nanowires and SiO2 Nanotubes,” Appl. Phys. Lett. 83, pp. 3999-4001 (1998).
    1.57 Y. Zhang, K. Suenaga, C. Colliex, and S. Iijima, “Coaxial Nanocable: Silicon Carbide and Silicon Oxide Sheathed with Boron Nitride and Carbon,” Science, 281, pp. 973-975 (1998).
    1.58 Han, Weiqiang; Bando, Yoshio; Kurashima, Keiji; Sato, Tadao, “Boron-Doped Carbon Nanotubes Prepared Through a Substitution Reaction,” Chem. Phys. Lett. 299, pp. 368-373 (1999).
    1.59 Eric W. Wong, Benjamin W. Maynor, Luke D. Burns, and Charles M. Lieber, “Growth of Metal Carbide Nanotubes and Nanorods,” Chem. Mater. 8, pp. 2041-2046 (1996).
    1.60 Weiqiang Han, Shoushan Fan, Qunqing Li, and Yongdan Hu, “Synthesis of Gallium Nitride Nanorods Through a Carbon Nanotube-Confined Reaction,” Science, 277, pp. 1287-1289 (1997).
    1.61 Weiqiang, Han; Shoushan, Fan; Qunqing, Li; Wenjie, Liang; Binglin, Gu; Dapeng, Yu, “Continuous Synthesis and Characterization of Silicon Carbide Nanorods,” Chem. Phys. Lett. 265, pp. 374-378 (1997).
    1.62 Weiqiang Han, Philipp Redlich, Frank Ernst, and Manfred Rühle, “Synthesizing Boron Nitride Nanotubes Filled with SiC Nanowires by Using Carbon Nanotubes as Templates,” Appl. Phys. Lett. 75, pp. 1875-1877 (1999).
    1.63 T. W. Ebbesen, “Carbon Nanotubes: Preparation and Properties,” Ann. Rev. Mater. Sci., 24, pp. 235-237 (1994).
    1.64 Supapan Seraphin, Dan Zhou, and Jun Jiao, “Filling the Carbon Nanocages,” J. Appl. Phys. 80, pp. 2097-2104 (1996).
    1.65 C. Guerret-Piecourt, Y. Le Bouar, A. Lolseau, H. Pascard, “Relation Between Metal Electronic Structure and Morphology of Metal Compounds inside Carbon Nanotubes,” Nature, 372, pp. 761-763 (1996).
    1.66 T. W. Ebbesen, P. M. Ajayan, “Large-Scale Synthesis of Carbon Nanotubes,” Nature, 358, pp. 220-223 (1992).
    1.67 P. M. Ajayan, Sumio lijima, “Capillarity-Induced Filling of Carbon Nanotubes,” Nature, 361, pp. 333-336 (1992).
    1.68 E. Dujardin, T.W. Ebbesen, H. Hiura, K. Tanigaki, “Capillarity and Wetting of Carbon Nanotubes,” Science 265, pp. 18501852 (1994).
    1.69 S. C. Tsang, Y. K. Chen, P. J. F. Harris, M. L. H. Green, “A Simple Chemical Method of Opening and Filling Carbon Nanotubes,” Nature, 372, pp. 159-162 (1994).
    1.70 D. Ugarte, A. Châtelain, and W. A. de Heer, “Nanocapillarity and Chemistry in Carbon Nanotubes,” Science, 274, pp. 1897-1899 (1996).
    1.71 Andrew Chu, Jessica Cook, Rufus J. R. Heesom, John L. Hutchison, Malcolm L. H. Green, and Jeremy Sloan, “Filling of Carbon Nanotubes with Silver, Gold, and Gold Chloride,” Chem. Mater. 8, pp. 2751-2754 (1996).
    Chapter 2
    2.1 V. W. L. Chin, T. L. Tansley, and T. Osotchan, “Electron Mobilities in Gallium, Indium, and Aluminum Nitrides,” J. Appl. Phys. 75, pp. 7365-7373 (1994).
    2.2 J. Nishizawa, H. Abe, T. Kurabayashi, “Molecular Layer Epitaxy,” J. Electrochem. Soc. 132, pp. 1197-1200 (1985).
    2.3 S. P. DenBaars, B. Y. Maa, P. D. Dapkus, A. D. Danner, and H. C. Lee, “Homogeneous and Heterogeneous Thermal Decomposition Rates of Trimethylgallium and Arsine and Their Relevance to the Growth of GaAs by MOCVD,” J. Cryst. Growth 77, pp. 188-192 (1986).
    2.4 T. T. Sheng and C. C. Chang, “Transmission Electron Microscopy of Cross Section of Large Scale Integrated Circuits,” IEEE Trans. Electron Devices Ed-23 (1975).
    2.5 Jeanette G. Grasse and Bernard J. Bulkin “Analytical Raman spectroscopy,” New York Wiley, (1991).
    2.6 K. W. Wong, X. T. Zhou, Frederick C. K. Au, H. L. Lai, C. S. Lee, and S. T. Lee, “Field-Emission Characteristics of SiC Nanowires Prepared by Chemical-Vapor Deposition”, Appl. Phys. Lett. 75, pp. 2918-2920 (1999).
    2.7 C. X. Xu and X. W. Sun, “Field Emission from Zinc Oxide Nanopins”, Appl. Phys. Lett. 83, pp. 3806-3808 (2003).
    2.8 Q. H. Wang, A. A. Setlur, J. M. Lauerhaas, J. Y. Dai, E. W. Seelig, and R. P. H. Chang, “A Nanotube-Based Field-Emission Flat Panel Display”, Appl. Phys. Lett. 72, pp. 2912-2914 (1998).
    Chapter 3
    3.1 J. C. Hulteen, C. R. Martin, “A General Template-Based Method for the Preparation of Nanomaterials,” J. Mater. Chem. 7, pp. 1075-1087 (1997).
    3.2 Hongjie Dai, Eric W. Wong, Yuan Z. Lu, Shoushan Fan, Charles M. Lieber, “Synthesis and Characterization of Carbide Nanorods,” Nature. 375, pp. 769-771 (1995).
    3.3 W. Han, S. Fan, W. Li, Y. Hu, “Synthesis of Gallium Nitride Nanorods Through a Carbon Nanotube-Confined Reaction,” Science, 277, pp. 1287-1289 (1997).
    3.4 Andreas Thess, Roland Lee, Pavel Nikolaev, Hongjie Dai, Pierre Petit, Jerome Robert, Chunhui Xu, Young Hee Lee, Seong Gon Kim, Andrew G. Rinzler, Daniel T. Colbert, Gustavo E. Scuseria, David Tománek, John E. Fischer, and Richard E. Smalley, “Crystalline Ropes of Metallic Carbon Nanotubes,” Science, 273, pp. 483-484 (1996).
    3.5 Y. Zhang, K. Suenaga, C. Colliex, and S. Iijima, “Coaxial Nanocable: Silicon Carbide and Silicon Oxide Sheathed with Boron Nitride and Carbon,” Science, 281, pp. 973-975 (1998).
    3.6 Alfredo M. Morales and Charles M. Lieber, “A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires,” Science, 279, pp. 208-211 (1998).
    3.7 D. P. Yu, C. S. Lee, I. Bello, X. S. Sun, S. Q. Feng, “Synthesis of Nano-Scale Silicon Wires by Excimer Laser Ablation at High Temperature,” Solid State Commun. 105, pp. 403-407 (1998).
    3.8 Yan Qiu Zhu, Wei Bing Hu, Wen Kuang Hsu, Mauricio Terrones, Nicole Grobert, Turgay Karali, Humberto Terrones, Jonathan P. Hare, Peter D. Townsend, Harold W. Kroto, David R. M. Walton, “A Simple Route to Silicon-Based Nanostructures,” Adv. Mater. 11, pp. 844-847 (1999).
    3.9 Peidong Yang and Charles M. Lieber, “Nanorod-Superconductor Composites: A Pathway to Materials with High Critical Current Densities,” Science, 273, pp. 1836-1839 (1996).
    3.10 P. Yang, C. M. Lieber, “Nanostructured High-Temperature Superconductors: Creation of Strong-Pinning Columnar Defects in Nanorod/Superconductor Composites,” J. Mater. Res. 12, pp. 2981-2996 (1997).
    3.11 A. Louchev, “Formation Mechanism of Pentagonal Defects and Bamboo-Like Structures in Carbon Nanotube Growth Mediated by Surface Diffusion,” Phys. Stat. sol. (a), 193, pp. 585-596 (2002).
    3.12 Lewis T, Chadderton, Ying Chen, “A Model for the Growth of Bamboo and Skeletal Nanotubes: Catalytic Capillarity,” J. Crystal Growth, 240, pp. 164-169 (2002).
    3.13 Ying Chen, John Fitz Gerald, Lewis T. Chadderton, Laurent Chaffron, “Nanoporous Carbon Produced by Ball Milling,” Appl. Phys. Lett. 74, pp. 2782-2784 (1999).
    3.14 Y. Chen, J. Fitz Gerald, L.Chaffron, J.S. Williams, “A Solid-State Process for Formation of Boron Nitride Nanotubes,” Appl. Phys. Lett. 74, pp. 2960-2962 (1999).
    3.15 Chadderton, Lewis T.; Chen, Ying, “Nanotube Growth by Surface Diffusion,” Phys. Lett. A, 263, pp. 401-405 (1999).
    3.16 Aya Moustafa Sayed Elahl, Maoqi He, Peizhen Zhou, G. L. Harris, “Systematic Study of Effects of Growth Conditions on the (Nano-, Meso-, Micro) Size and (One-, Two-, Three-Dimensional) Shape of GaN Single Crystals Grown by a Direct Reaction of Ga with Ammonia,” J. Appl. Phys. 94, pp. 7749-7756 (2003).
    3.17 Donald L. Smith, “Thin-Film Deposition: Principles and Practice,” McGraw-Hill New York (1995).
    3.18 T. Akasaka, Y. Kobayashi, S. Ando, N. Kobayashi, “GaN Hexagonal Microprisms with Smooth Vertical Facets Fabricated by Selective Metalorganic Vapor Phase Epitaxy,” Appl. Phys. Lett. 71, pp. 2196-2198 (1997).
    3.19 Shota Kitamura, Kazumasa Hiramatsu, Nobuhiko Sawaki, “Fabrication of GaN Hexagonal Pyramids on Dot-Patterned GaN/Sapphire Substrates via Selective Metalorganic Vapor Phase Epitaxy,” Jpn. J. Appl. Phys. 34, pp. L1184-L1186 (1995).

    Chapter 4
    4.1 M.S. Dresselhaus, G. Dresselhaus and Ph. Avouris (Eds.), “Carbon Nanotubes,” Topics Appl. Phys. 80, pp. 55-81 (2001).
    4.2 C. R. Martin, “Nanomaterials- A Membrane-Based Synthetic Approach,” Science 266, pp. 1961-1963 (1994).
    4.3 S. M. Yang, I. Sokolov, N. Coombs, C. T. Kresge, and G. A. Ozin, “Formation of Hollow Helicoids in Mesoporous Silica: Supramolecular Origami,” Adv. Mater. 11, pp. 1427-1431 (1999).
    4.4 Y. Wu and P. Yang, “Melting and Welding Semiconductor Nanowires in Nanotubes,” Adv. Mater. 13, pp. 520-523 (2001).
    4.5 P. M. Ajayan, J. M. Nugent, R. W. Siegel, B. Wei, Ph. Kohler-Redlich, “Growth of Carbon Micro-Trees,” Nature 404, p. 243 (2000).
    4.6 Joshua Goldberger, Rongrui He, Yanfeng Zhang, Sangkwon Lee, Haoquan Yan, Heon-Jin Choi, Peidong Yang, “Single-Crystal Gallium Nitride Nanotubes,” Nature 422, pp. 599-602 (2003).
    4.7 R. Ma, Y. Bando, and T. Sato, “Controlled Synthesis of BN Nanotubes, Nanobamboos, and Nanocables,” Adv. Mater. 14, pp. 366-368 (2002).
    4.8 G. Schmidt and K. Eberl, “Nanotechnology: Thin Solid Films Roll up into Nanotubes,” Nature 410, p. 168 (2001).
    4.9 V. Ya. Prinz, , V. A. Seleznev, , A. K. Gutakovsky, , A. V. Chehovskiy, , V. V. Preobrazenskii, , M. A. Putyato, and T. A. Gavrilova, “Free-Standing and Overgrown InGaAs/GaAs Nanotubes, Nanohelices and Their Arrays,” Physica E 6, pp. 828-831 (2000).
    4.10 L. W. Yin, Y. Bando and D. Golberg, “Template-Free Synthesis on Single-Crystalline InP Nanotubes,” Appl. Phy. Lett. 85, 3869-3871 (2004).
    4.11 E. P. A. M. Bakkersand and M. A. Verheijen, “Synthesis of InP Nanotubes,” J. Am. Chem. Soc. 125, pp. 3440-3441 (2003)
    4.12 T.B. Massalski, H. Okamoto, P.R. Subramanian and L. Kacprzak, "2nd Edition, Binary Alloy Phase Diagrams," ASM International, Materials Park, Ohio, USA (1990).

    Chapter 5
    5.1 Y. Wu, P. Yang, “Germanium Nanowire Growth via Simple Vapor Transport,” Chem. Mater. 12, pp. 605-607 (2000).
    5.2 Tevye Kuykendall, Peter Pauzauskie, Peidong Yang, “Metalorganic Chemical Vapor Deposition Route to GaN Nanowires with Triangular Cross Sections,” Nano Lett. 3, pp. 1063-1066 (2003).
    5.3 X. Duan, C. M. Lieber, “General Synthesis of Compound Semiconductor Nanowires,” Adv. Mater. 12, pp. 298-302 (2000).
    5.4 M. H. Huang, Y. Wu, H. Feick, P. Yang, “Synthesis and Electrochemical Polymerization of New Oligothiophene Functionalized Cyclophanes,” Adv. Mater. 13, pp. 113-116 (2000).
    5.5 Hongjie Dai, Eric W. Wong, Yuan Z. Lu, Shoushan Fan, Charles M. Lieber, “Synthesis and Characterization of Carbide Nanorods,” Nature 375, pp. 769-771 (1995).
    5.6 Wei, J.Q. Jiang, C.L. Wu, D.H. and Wei, B. Q., “Straight Boron Carbide Nanorods Prepared From Carbon Nanotubes,” J. Mater. Chem. 12, pp. 3121-3124 (2002).
    5.7 Weiqiang Han, Shoushan Fan, Qunqing Li, Yongdan Hu, “Synthesis of Gallium Nitride Nanorods Through a Carbon Nanotube-Confined Reaction,” Science 277, pp. 1287-1289 (1997).
    5.8 Rodney S. Ruoff, “The Continuing Saga,” Nature 372, p. 731 (1994).
    5.9 Wei-Qiang Han, A. Zettl, “GaN Nanorods Coated with Pure BN,” Appl. Phy. Lett. 81, pp. 5051-5053 (2002).
    5.10 Wei-qiang Han, Alex Zettl, “An Efficient Route to Graphitic Carbon-Layer-Coated Gallium Nitride Nanorods,” Adv. Mater. 14, pp. 1560-1562 (2002).
    5.11 S. Stemmer, Z.Q. Chen, W.J. Zhu, and T.P. Ma, “Electron Energy-Loss Spectroscopy Study of Thin Film Hafnium Aluminates for Novel Gate Dielectrics,” J. Microscopy 210, pp. 74-79 (2003).
    5.12 C.C. Ahn and O.L. Krivanek, “EELS Atlas,” Gatan Inc. Warrendale, MA, USA (1983).
    5.13 Z.W. Pan, S. Dai, D. B. Beach, N. D. Evans, and D. H. Lowndes, “Gallium-Mediated Growth of Multiwall Carbon Nanotubes,” Appl. Phys. Lett. 82, pp. 1947-1949 (2003).
    5.14 B. K. Ridley, “Quantum Processes in Semiconductors,” Clarendon, Oxford (1982).
    5.15 Xinwei Zhao, Olaf Schoenfeld, Shuji Komuro, Yoshinobu Aoyagi and Takuo Sugano, “Quantum Confinement in Nanometer-Sized Silicon Crystallites,” Phys. Rev. B, 50, pp. 18654-18657 (1994).
    5.16 M. Watanabe, S. Juodkazis, H.B. Sun, S. Matsuo, and H. Misawa, “Luminescence and Defect Formation by Visible and Near-Infrared Irradiation of Vitreous Silica,” Phys. Rev. B, 60, pp. 9959-9964 (1999).
    5.17 C. X. Xu and X. W. Sun, “Field Emission from Zinc Oxide Nanopins,” Appl. Phys. Lett. 83, pp. 3806-3808 (2003).
    5.18 Q. H. Wang, A. A. Setlur, J. M. Lauerhaas, J. Y. Dai, E. W. Seelig, and R. P. H. Chang, “A Nanotube-Based Field-Emission Flat Panel Display,” Appl. Phys. Lett. 72, pp. 2912-2914 (1998).

    Chapter 6
    6.1 Jih-Jen Wu, Sai-Chang Liu, Chien-Ting Wu, Kuei-Hsien Chen and Li-Chyong Chen, “Heterostructures of ZnO–Zn Coaxial Nanocables and ZnO Nanotubes,” Appl. Phy. Lett. 81, pp. 1312-1314 (2002).
    6.2 Yubao Li, Yoshio Bando and Dmitri Golberg, “Single-Crystalline In2O3 Nanotubes Filled with In,” Adv. Mater. 15, pp. 581-585 (2003).
    6.3 Renzhi Ma, Yoshio Bando, and Tadao Sato, “Controlled Synthesis of BN Nanotubes, Nanobamboos, and Nanocables,” Adv. Mater. 14, pp. 366-368 (2002).
    6.4 Y. Zhang, K. Suenaga, C. Colliex, and S. Iijima, “Coaxial Nanocable: Silicon Carbide and Silicon Oxide Sheathed with Boron Nitride and Carbon,” Science, 281, pp. 973-975 (1998).
    6.5 Wen-Sheng Shi, Hong-Ying Peng, Lu Xu, Ning Wang, Yuan-Hong H. Tang, and Shuit-Tong Lee, “Coaxial Three-Layer Nanocables Synthesized by Combining Laser Ablation and Thermal Evaporation,” Adv. Mater. 12, pp. 1927-1930 (2000).
    6.6 D. Ugarte, A. Châtelain, and W. A. de Heer, “Nanocapillarity and Chemistry in Carbon Nanotubes,” Science, 274, pp. 1897-1900 (1996).
    6.7 Weiqiang Han, Shoushan Fan, Qunqing Li, and Yongdan Hu, “Synthesis of Gallium Nitride Nanorods Through a Carbon Nanotube-Confined Reaction,” Science, 277, pp. 1287-1289 (1997).
    6.8 Demoncy N., O. Stephan, N. Brun, C. Colliex, A. Loiseau and H. Pascard, “Filling Carbon Nanotubes with Metals by The Arc-Discharge Method: the Key Role of Sulfur,” Eur. Phys. J. B 4, pp. 147-151 (1998).
    6.9 G. Schmitz, P. Gassmann and R. Franchy, “A Combined Scanning Tunneling Microscopy and Electron Energy Loss Spectroscopy Study on The Formation of Thin, Well-Ordered β-Ga2O3 Films on CoGa(001),” J. Appl. Phys. 83, pp. 2533-2538 (1998).
    6.10 G.Y. Zhang, X.C. Ma, D.Y. Zhang, and E.G. Wang, “Polymerized Carbon Nitride Nanobells,” J. Appl. Phys. 91, pp. 9324-9332 (2002).
    6.11 S. C. Tsang, P. J. F. Harris and M. L. H. Green, “Thinning and Opening of Carbon Nanotubes by Oxidation Using Carbon Dioxide,” Nature, 362, pp. 520-522 (1993).
    6.12 P. M. Ajayan, T. W. Ebbesen, T. Ichihashi, S. Iilima, K. Tanigaki, and H. Hiura, “Opening Carbon Nanotubes With Oxygen and Implications for Filling,” Nature, 362, pp. 522-524 (1993).
    6.13 C.C. Ahn and O.L. Krivanek, “EELS Atlas,” Gatan Inc. Warrendale, MA, USA (1983).
    6.14 K. Suenaga, C. Colliex and S. Iijima, “In Situ Electron Energy-Loss Spectroscopy on Carbon Nanotubes During Deformation,” Appl. Phy. Lett. 78, pp. 70-72 (2001).
    6.15 K. S. A. Butcher, H. Timmers, Afifuddin and Patrick P.-T. Chen, “Crystal Size and Oxygen Segregation for Polycrystalline GaN,” J. Appl. Phys. 92, pp. 3397-3403 (2002).
    6.16 Toshinari Ichihashi, Jun-ichi Fujita, Masahiko Ishida and Yukinori Ochiai, “In Situ Observation of Carbon-Nanopillar Tubulization Caused by Liquidlike Iron Particles,” Phy. Rev. Lett. 92, pp. 2157021-2157024 (2004).
    6.17 S. IIjima and T. Ichihashi, “Structural Instability of Ultrafine Particles of Metals,” Phy. Rev. Lett. 56, pp. 616-621 (1986).
    6.18 Ph. Buffat and J-P. Borel, “Size Effect on The Melting Temperature of Gold Particles,” Phy. Rev. A, 13, pp. 2287-2298 (1976).
    6.19 P. M. Ajayan and S. Iijima, “Capillarity-Induced Filling of Carbon Nanotubes,” Nature, 361, pp. 333-335 (1993).

    Chapter 7
    7.1 Jih-Jen Wu, Sai-Chang Liu, Chien-Ting Wu, Kuei-Hsien Chen and Li-Chyong Chen, “Heterostructures of ZnO–Zn Coaxial Nanocables and ZnO Nanotubes,” Appl. Phy. Lett. 81, pp. 1312-1314 (2002).
    7.2 Yubao Li, Yoshio Bando and Dmitri Golberg, “Single-Crystalline In2O3 Nanotubes Filled with In,” Adv. Mater. 15, pp. 581-585 (2003).
    7.3 Renzhi Ma, Yoshio Bando, and Tadao Sato, “Controlled Synthesis of BN Nanotubes, Nanobamboos, and Nanocables,” Adv. Mater. 14, pp. 366-368 (2002).
    7.4 Y. Zhang, K. Suenaga, C. Colliex, and S. Iijima, “Coaxial Nanocable: Silicon Carbide and Silicon Oxide Sheathed with Boron Nitride and Carbon,” Science, 281, pp. 973-975 (1998).
    7.5 Wen-Sheng Shi, Hong-Ying Peng, Lu Xu, Ning Wang, Yuan-Hong H. Tang, and Shuit-Tong Lee, “Coaxial Three-Layer Nanocables Synthesized by Combining Laser Ablation and Thermal Evaporation,” Adv. Mater. 12, pp. 1927-1930 (2000).
    7.6 D. Ugarte, A. Châtelain, and W. A. de Heer, “Synthesis of Gallium Nitride Nanorods Through a Carbon Nanotube-Confined Reaction,” Science, 274, pp. 1897-1899 (1996).
    7.7 Weiqiang Han, Shoushan Fan, Qunqing Li, and Yongdan Hu, “Synthesis of Gallium Nitride Nanorods Through a Carbon Nanotube-Confined Reaction,” Science, 277, pp. 1287-1289 (1997).
    7.8 Demoncy N., O. Stephan, N. Brun, C. Colliex, A. Loiseau and H. Pascard, “Filling Carbon Nanotubes with Metals by the Arc-Discharge Method: the Key role of Sulfur,” Eur. Phys. J. B 4, pp. 147-150 (1998).
    7.9 G. Schmitz, P. Gassmann and R. Franchy, “A Combined Scanning Tunneling Microscopy and Electron Energy Loss Spectroscopy Study on The Formation of Thin, Well-Ordered β-Ga2O3 Films on CoGa(001),” J. Appl. Phys. 83, pp. 2533-2538 (1998).
    7.10 C.C. Ahn and O.L. Krivanek, “EELS Atlas,” Gatan Inc. Warrendale, MA USA (1983).
    7.11 K. Suenaga, C. Colliex and S. Iijima, “In Situ Electron Energy-Loss Spectroscopy on Carbon Nanotubes During Deformation,” Appl. Phy. Lett. 78, pp. 70-72 (2001).
    7.12 Toshinari Ichihashi, Jun-ichi Fujita, Masahiko Ishida and Yukinori Ochiai, “In Situ Observation of Carbon-Nanopillar Tubulization Caused by Liquidlike Iron Particles,” Phy. Rev. Lett. 92, pp. 2157021-2157024 (2004).
    7.13 S. IIjima and T. Ichihashi, “Structural Instability of Ultrafine Particles of Metals,” Phy. Rev. Lett. 56, pp. 616-621 (1986).
    7.14 Ph. Buffat and J-P. Borel, “Size Effect on The Melting Temperature of Gold Particles,” Phy. Rev. A 13, pp. 2287-2298 (1976).
    7.15 Z. R. Dai, Z. W. Pan and Z. L. Wang, “Gallium Oxide Nanoribbons and Nanosheets,” J. Phys. Chem. B 106, pp. 902-904 (2002).

    Chapter 8
    8.1 Jih-Jen Wu, Sai-Chang Liu, Chien-Ting Wu, Kuei-Hsien Chen and Li-Chyong Chen, “Heterostructures of ZnO–Zn Coaxial Nanocables and ZnO Nanotubes,” Appl. Phy. Lett. 81, pp. 1312-1314 (2002).
    8.2 Yubao Li, Yoshio Bando and Dmitri Golberg, “Single-Crystalline In2O3 Nanotubes Filled with In,” Adv. Mater. 15, pp. 581-585 (2003).
    8.3 Renzhi Ma, Yoshio Bando, and Tadao Sato, “Controlled Synthesis of BN Nanotubes, Nanobamboos, and Nanocables,” Adv. Mater. 14, pp. 366-368 (2002).
    8.4 Y. Zhang, K. Suenaga, C. Colliex, and S. Iijima, “Coaxial Nanocable: Silicon Carbide and Silicon Oxide Sheathed with Boron Nitride and Carbon,” Science, 281, pp. 973-975 (1998).
    8.5 Wen-Sheng Shi, Hong-Ying Peng, Lu Xu, Ning Wang, Yuan-Hong H. Tang, and Shuit-Tong Lee, “Coaxial Three-Layer Nanocables Synthesized by Combining Laser Ablation and Thermal Evaporation,” Adv. Mater. 12, pp. 1927-1930 (2000).
    8.6 Hongjie Dai, Eric W. Wong, Yuan Z. Lu, Shoushan Fan, Charles M. Lieber, “Synthesis and Characterization of Carbide Nanorods,” Nature 375, pp. 769-771 (1995).
    8.7 Wei, J.Q. Jiang, C.L. Wu, D.H. and Wei, B. Q., “Straight Boron Carbide Nanorods Prepared from Carbon Nanotubes,” J. Mater. Chem. 12, pp. 3121-3124 (2002).
    8.8 Weiqiang Han, Shoushan Fan, Qunqing Li, Yongdan Hu, “Synthesis of Gallium Nitride Nanorods Through a Carbon Nanotube-Confined Reaction,” Science 277, pp. 1287-1289 (1997).
    8.9 Rodney S. Ruoff, “The Continuing Saga,” Nature 372, 731-733 (1994).
    8.10 Wei-qiang Han, Alex Zettl, “An Efficient Route to Graphitic Carbon-Layer-Coated Gallium Nitride Nanorods,” Adv. Mater. 14, pp. 1560-1562 (2002).
    8.11 C. Y. Zhi, D. Y. Zhong and E. G. Wang, “GaN-Filled Carbon Nanotubes: Synthesis and Photoluminescence”, Chem. Phys. Lett. 381, pp. 715-719 (2003).
    8.12 O. Brandt, H. Yang, H.r Kostial, and K. H. Ploog, “High p-Type Conductivity in Cubic GaN/GaAs(113)A by Using Be as the Acceptor and O as the Codopant”, Appl. Phys. Lett. 69, pp. 2707-2709 (1996).
    8.13 X. Sun, H. Yang, L. Zheng, D. Xu, J. Li, Y. Wang, G. Li and Z. Wang, “Stability Investigation of Cubic GaN Films Grown by Metalorganic Chemical Vapor Deposition on GaAs (001)”, Appl. Phys. Lett. 74, pp. 2827-2829 (1999).
    8.14 S. Dhara, A. Datta, C. T. Wu, Z. H. Lan, K. H. Chen, and Y. L. Wang, C. W. Hsu, C. H. Shen, and L. C. Chen and C. C. Chen, “Hexagonal-to-Cubic Phase Transformation in GaN Nanowires by Ga+ Implantation”, Appl. Phys. Lett. 84, pp. 5473-5475 (2004).
    8.15 J. Q. Hu, Y. Bando, J. H. Zhan, F. F. Xu, T. Sekiguchi, D. Golberg, “Growth of Single-Crystalline Cubic GaN Nanotubes with Rectangular Cross-Sections”, Adv. Mater. 16, pp. 1465-1468 (2004).
    8.16 Jolin A. Jegier, Stuart McKernan, Andrew P. Purdy, and Wayne L. Gladfelter, “Ammonothermal Conversion of Cyclotrigallazane to GaN: Synthesis of Nanocrystalline and Cubic GaN from [H2GaNH2]3”, Chem. Mater. 12, pp. 1003-1010 (2000).
    8.17 S. C. Tsang, P. J. F. Harris and M. L. H. Green, “Thinning and Opening of Carbon Nanotubes by Oxidation Using Carbon Dioxide,” Nature, 362, pp. 520-522 (1993).
    8.18 P. M. Ajayan, T. W. Ebbesen, T. Ichihashi, S. Iilima, K. Tanigaki, and H. Hiura, “Opening Carbon Nanotubes With Oxygen and Implications for Filling,” Nature, 362, pp. 522-524 (1993).
    8.19 X. Ma, E. G. Wang, R. D. Tilley, D. A. Jefferson and W. Zhou, “Size-Controlled Short Nanobells: Growth and Formation Mechanism”, Appl. Lett. Phys. 77 , pp. 41364138 (2000).
    8.20 D. Y. Zhong, S. Liu, G. Zhang and E. G. Wang, “Large-Scale Well Aligned Carbon Nitride Nanotube Films: Low Temperature Growth and Electron Field Emission”, J. Appl. Phys. 89, pp. 5939-5943 (2001).
    8.21 C.C. Ahn and O.L. Krivanek, “EELS Atlas,” Gatan Inc. Warrendale, MA, USA (1983).
    8.22 K. Suenaga, C. Colliex and S. Iijima, “In Situ Electron Energy-Loss Spectroscopy on Carbon Nanotubes During Deformation”, Appl. Phy. Lett. 78, pp. 70-72 (2001).
    8.23 S. Amelinckx, X. B. Zhang, D. Bernaerts, X. F. Zhang, V. Ivanov and J. B. Nagy, “A Formation Mechanism for Catalytic Grown Helix Shaped Graphite Nanotubes”, Science, 265, pp. 635-637 (1994).
    8.24 Zheng Wei Pan, Sheng Dai and David B. Beach, “Gallium-Mediated Growth of Multiwall Carbon Nanotubes”, Appl. Phy. Lett. 82, pp. 1947-1949 (2003).
    8.25 T.B. Massalski, H. Okamoto, P.R. Subramanian and L. Kacprzak, "2nd Edition, Binary Alloy Phase Diagrams," ASM International, Materials Park, Ohio, USA (1990).
    8.26 K. W. Wong, X. T. Zhou, Frederick C. K. Au, H. L. Lai, C. S. Lee, and S. T. Lee, “Field-Emission Characteristics of SiC Nanowires Prepared by Chemical-Vapor Deposition”, Appl. Phys. Lett. 75, pp. 2918-2920 (1999).
    8.27 C. X. Xu and X. W. Sun, “Field Emission from Zinc Oxide Nanopins”, Appl. Phys. Lett. 83, pp. 3806-3808 (2003).
    8.28 Q. H. Wang, A. A. Setlur, J. M. Lauerhaas, J. Y. Dai, E. W. Seelig, and R. P. H. Chang, “A Nanotube-Based Field-Emission Flat Panel Display”, Appl. Phys. Lett. 72, pp. 2912-2914 (1998).
    10.1 M. S. Dresselhaus, G. Dresselhaus and P. Avouris, “Carbon Nanotubes: Synthesis, Structure, Properties, and Applications,” Springer, Berlin (2001).
    10.2 J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, “Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device”, Science, 286, pp. 1550-1552 (1999).
    10.3 H. B. Peng, T. G. Ristroph, G. M. Schurmann, G. M. King, and J. Yoon, “Patterned Growth of Single-Walled Carbon Nanotube Arrays from a Vapor-Deposited Fe Catalyst”, Appl. Phys. Lett. 83, pp. 4238-4240 (2003).
    10.4 Alireza Nojeh, Ant Ural, R. Fabian Pease and Hongjie Dai, “Electric-Field-Directed Growth of Carbon Nanotubes in Two Dimensions”, J. Vac. Sci. Technol. B, 22, pp. 3421-3425 (2004).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE