簡易檢索 / 詳目顯示

研究生: 吳宏遠
Hung-Yuan Wu
論文名稱: 奈米碳管/酚醛樹脂複合材料受溫濕條件影響之疲勞與電性質研究
Fatigue and Electrical Properties of CNT/Phenolic Composites Under Moisture-Temperature Effects
指導教授: 葉銘泉
Ming-Chuen Yip
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 91
中文關鍵詞: 奈米碳管疲勞機械性質熱循環電性質
外文關鍵詞: carbon nanotube, fatigue, mechanical properties, thermal cycling, electrical properties
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於奈米碳管本身具有優良的特性,包含高強度、高剛性、高導電性、熱傳導性佳等優點。本文主要研究奈米碳管/酚醛樹脂複合材料,探討添加不同重量百分比的碳管對酚醛樹脂的抗拉強度、疲勞壽命、導電性的影響,並經過溫濕效應七天和熱循環500週次效應的環境條件對以上特性是否有所變化。結果顯示隨著碳管含量的增加,抗拉強度明顯有提升;電阻則是呈現下降的趨勢;而在相同的疲勞壽命下,添加碳管的複合材料的絕對應力比純酚醛高。受到溫濕與熱循環效應的試片,其抗拉強度比室溫低;電阻也比室溫高;而在相同的疲勞壽命下,添加碳管的複合材料的絕對應力也比室溫低。所有試片的破壞斷面經過SEM的觀察,瞭解其破壞的情形。


    Due to carbon nanotubes with excellent mechanical and electrical properties such as high stiffness, light weight, heat stability, excellent heat conductivity, and excellent electrical conductivity. This study was aimed to investigate the properties of composites consisting of adding several different proportions of carbon nanotubes to phenolic resin, which contained tensile strength, fatigue life and electrical properties. The experimental results showed that the electric resistance decreases as the weight percentage of the nanotubes increases. But the tensile strength increased as the nanotubes increased. After the different moisture-temperature circumstances and thermal cycling, the increase of the electric resistance was compared to the pristine composites. The experimental results hoped to be understood from the fracture surface observations by scanning electron microscope (SEM).

    目次 表目錄………………………………………………………………… III 圖目錄……………………………………………………………………IV 第一章 前言…………………………………………………………… 1 第二章 研究動機……………………………………………………… 4 第三章 文獻回顧……………………………………………………… 6 3-1 複合材料疲勞性質……………………………………… 6 3-2 疲勞破壞機制…………………………………………… 6 3-3 應力等級對疲勞性質的影響…………………………… 7 3-4 應力(S)與破壞週次(Nf)間的關係………………………8 3-5 濕氣吸收模型…………………………………………… 8 3-6 濕氣對複材機械性質的影響…………………………… 9 3-7 電磁波屏蔽理論………………………………………… 9 3-8.1奈米碳管起源………………………………………… 10 3-8.2 碳奈米管的備製………………………………………11 3-8.3 奈米碳管複合材料的機械性質………………………12 第四章 實驗內容及程序………………………………………………16 4-1 實驗儀器…………………………………………………16 4-2 實驗材料…………………………………………………19 4-3 試片製造流程……………………………………………20 4-4.1 實驗流程………………………………………………21 4-4.2 實驗測試條件…………………………………………21 4-4.3 實驗測試方法…………………………………………22 4-5 試片數量…………………………………………………23 第五章 結果與討論……………………………………………………25 5-1 試片製作…………………………………………………25 5-2 吸濕率測試………………………………………………25 5-3 電性質量測………………………………………………26 5-3.1室溫(25℃)下之電阻量測…………………………… 26 5-3.2 25℃/85%RH之電阻量測………………………………27 5-3.3 熱循環500週次之電阻量測………………………… 27 5-4 靜態拉伸測試……………………………………………28 5-4.1室溫下(25℃)之靜態拉伸測試結果………………… 28 5-4.2 25℃/85%RH之靜態拉伸測試結果……………………29 5-4.3 熱循環500週次之靜態拉伸測試結果……………… 29 5-4.4 全部環境條件靜態拉伸之討論………………………30 5-5 軸向拉伸疲勞測試………………………………………31 5-5.1室溫下(25℃)之疲勞測試結果……………………… 31 5-5.2 25℃/85%RH之疲勞測試結果…………………………32 5-5.3 熱循環500週次後之疲勞測試結果………………… 33 5-5.4全部環境條件疲勞測試之討論……………………… 34 5-5.5軸向拉伸疲勞測試破壞之SEM圖………………………35 第六章 結論……………………………………………………………37 6-1吸濕實驗………………………………………………… 37 6-2靜態拉伸試驗…………………………………………… 37 6-3疲勞試驗………………………………………………… 38 6-4電性質…………………………………………………… 38 參考文獻…………………………………………………………………40 附表………………………………………………………………………46 附圖………………………………………………………………………51 附 表 表1-1 碳管與傳統材料的機械強度及密度比較………………………46 表5-1 室溫下CNT/phenolic複材的電阻值……………………………46 表5-2 室溫下CNT/phenolic複材的表面電阻率………………………46 表5-3 CNT/phenolic複材經熱循環500週次之電阻值……………… 46 表5-4 CNT/phenolic複材經熱循環500週次之表面電阻率………… 47 表5-5 室溫下CNT/phenolic複材之靜態拉伸強度……………………47 表5-6 25℃/85%RH CNT/phenolic複材之靜態拉伸強度…………… 47 表5-7 熱循環500週次CNT/phenolic複材之靜態拉伸強度………… 47 表5-8 室溫下純酚醛之疲勞壽命………………………………………48 表5-9 室溫下5wt% CNT/phenolic複材之疲勞壽命………………… 48 表5-10 25℃/85%RH純酚醛之疲勞壽命……………………………… 49 表5-11 25℃/85%RH 5wt% CNT/phenolic複材之疲勞壽命………… 49 表5-12 熱循環500週次純酚醛之疲勞壽命……………………………50 表5-13 熱循環500週次 5wt% CNT/phenolic複材之疲勞壽命………50 圖目錄 圖 1-1 Surface resistivity spectrum 表面電阻率光譜………51 圖 3-1 連續纖維複合材料積層板損壞發展示意圖…………………51 圖 3-2 電磁波的屏蔽原理圖…………………………………………52 圖 3-3 單層奈米碳管及多層奈米碳管………………………………52 圖 3-4 C60的模型(由20個六角形及12個五角形所組成,其碳原子間的連結形式與石墨非常類似)…………………………………………53 圖 3-5 電弧放電法(Arc discharge)……………………………… 53 圖 4-1 迷你鑽石切割機………………………………………………54 圖 4-2 熱壓機…………………………………………………………54 圖 4-3 超音波震動機…………………………………………………55 圖 4-4 磁力攪拌機……………………………………………………55 圖 4-5 真空烘箱與幫浦………………………………………………56 圖 4-6 拋光機…………………………………………………………56 圖 4-7 恆溫恆濕機……………………………………………………57 圖 4-8 熱循環機………………………………………………………57 圖 4-9 Instron-8848微拉伸試驗機…………………………………58 圖 4-10 掃描式電子顯微鏡(SEM)……………………………………58 圖 4-11 高阻計……………………………………………………… 59 圖 4-12 毫歐姆計…………………………………………………… 59 圖 4-13 抽真空流程………………………………………………… 60 圖 4-14 CNT/phenolic resin熱壓成形試片與模具疊層圖……… 60 圖 4-15 熱壓成型溫度壓力與時間圖……………………………… 60 圖 4-16 CNT/phenolic resin試片尺寸圖………………………… 61 圖 4-17 試片(一)…………………………………………………… 61 圖 4-18 試片(二)…………………………………………………… 62 圖 4-19 實驗流程(一)……………………………………………… 62 圖 4-20 靜態強度實驗流程(二)…………………………………… 63 圖 4-21 疲勞實驗流程(三)………………………………………… 63 圖 4-22 熱循環溫度和時間關係圖………………………………… 64 圖 5-1 未經分散之碳管團聚情形……………………………………64 圖 5-2 熱壓失敗之試片………………………………………………65 圖 5-3 熱壓成功之試片………………………………………………65 圖 5-4純酚醛與奈米碳管複合材料之吸濕率……………………… 66 圖 5-5室溫下 CNT/phenolic複材之電阻圖…………………………66 圖 5-6室溫下 CNT/phenolic複材之表面電阻率圖…………………67 圖 5-7 CNT/phenolic複材經熱循環500週次之電阻圖…………… 67 圖 5-8 CNT/phenolic複材經熱循環500週次之表面電阻率圖…… 68 圖 5-9室溫下 CNT/phenolic複材之靜態拉伸強度…………………68 圖 5-10室溫(25℃)下純酚醛之靜態拉伸破壞斷面(100倍)……… 69 圖 5-11室溫(25℃)下1wt% CNT/phenolic複材之靜態拉伸破壞斷面(100倍)…………………………………………………………………69 圖 5-12室溫(25℃)下2wt% CNT/phenolic複材之靜態拉伸破壞斷面(100倍)…………………………………………………………………70 圖 5-13室溫(25℃)下3wt% CNT/phenolic複材之靜態拉伸破壞斷面(100倍)…………………………………………………………………70 圖 5-14室溫(25℃)下5wt% CNT/phenolic複材之靜態拉伸破壞斷面(100倍)…………………………………………………………………71 圖 5-15室溫(25℃)下純酚醛之靜態拉伸破壞斷面(10000倍)…… 71 圖 5-16室溫(25℃)下1wt% CNT/phenolic複材之靜態拉伸破壞斷面(10000倍)………………………………………………………………72 圖 5-17室溫(25℃)下2wt% CNT/phenolic複材之靜態拉伸破壞斷面(10000倍)………………………………………………………………72 圖 5-18室溫(25℃)下3wt% CNT/phenolic複材之靜態拉伸破壞斷面(10000倍)………………………………………………………………73 圖 5-19室溫(25℃)下5wt% CNT/phenolic複材之靜態拉伸破壞斷面(10000倍)………………………………………………………………73 圖 5-20 25℃/ 85%RH CNT/phenolic複材之靜態拉伸強度……… 74 圖 5-21 25℃/ 85%RH純酚醛之靜態拉伸破壞斷面(100倍)……… 74 圖 5-22 25℃/ 85%RH 5wt% CNT/phenolic複材之靜態拉伸破壞斷面(100倍)…………………………………………………………………75 圖 5-23 熱循環500週次CNT/phenolic複材之靜態拉伸強度………75 圖 5-24 熱循環500週次純酚醛之靜態拉伸破壞斷面(100倍)…… 76 圖 5-25 熱循環500週次5wt% CNT/phenolic複材之靜態拉伸破壞斷面(100倍)…………………………………………………………………76 圖 5-26純酚醛在三種環境條件下之靜態拉伸強度…………………77 圖 5-27 5wt% CNT/phenolic複材在三種環境條件下之靜態拉伸強度……………………………………………………………………… 77 圖 5-28 純酚醛與5wt% CNT/phenolic複材在三種環境條件下之靜態拉伸強度……………………………………………………………… 78 圖 5-29 室溫下純酚醛之疲勞壽命曲線…………………………… 78 圖 5-30 室溫下5wt% CNT/phenolic複材之疲勞壽命曲線…………79 圖 5-31 室溫下純酚醛與5wt% CNT/phenolic複材之疲勞壽命曲線(normalized)………………………………………………………… 79 圖 5-32 室溫下純酚醛與5wt% CNT/phenolic複材之疲勞壽命曲線(絕對應力)…………………………………………………………………80 圖 5-33 25℃/ 85%RH純酚醛之疲勞壽命曲線………………………80 圖 5-34 25℃/ 85%RH 5wt% CNT/phenolic複材之疲勞壽命曲線…81 圖 5-35 25℃/ 85%RH純酚醛與5wt% CNT/phenolic複材之疲勞壽命曲線(normalized)……………………………………………………… 81 圖 5-36 25℃/ 85%RH純酚醛與5wt% CNT/phenolic複材之疲勞壽命曲線(絕對應力)………………………………………………………… 82 圖 5-37 熱循環500週次純酚醛之疲勞壽命曲線……………………82 圖 5-38 熱循環500週次5wt% CNT/phenolic複材之疲勞壽命曲線 83 圖 5-39 熱循環500週次純酚醛與5wt% CNT/phenolic複材之疲勞壽命曲線(normalized)…………………………………………………… 83 圖 5-40 熱循環500週次純酚醛與5wt% CNT/phenolic複材之疲勞壽命曲線(絕對應力)……………………………………………………… 84 圖 5-41 純酚醛在三種環境條件下之疲勞壽命曲線(normalized) 84 圖 5-42 5wt% CNT/phenolic複材在三種環境條件下之疲勞壽命曲線(normalized)………………………………………………………… 85 圖 5-43 純酚醛在三種環境條件下之疲勞壽命曲線(絕對應力)… 85 圖 5-44 5wt% CNT/phenolic複材在三種環境條件下之疲勞壽命曲線(絕對應力)…………………………………………………………… 86 圖 5-45 純酚醛與5wt% CNT/phenolic複材在三種環境條件下之疲勞壽命曲線(絕對應力)………………………………………………… 86 圖 5-46 室溫(25℃)下純酚醛之疲勞破壞斷面(938週次)…………87 圖 5-47 室溫(25℃)下純酚醛之疲勞破壞斷面(89763週次)………87 圖 5-48 室溫(25℃)下5wt% CNT/phenolic複材之疲勞破壞斷面(1917週次)……………………………………………………………………88 圖 5-49 室溫(25℃)下5wt% CNT/phenolic複材之疲勞破壞斷面(89932週次)……………………………………………………………88 圖 5-50 25℃/ 85%RH 5wt% CNT/phenolic複材之疲勞破壞斷面(89422週次)……………………………………………………………89 圖 5-51 熱循環500週次純酚醛之疲勞破壞斷面(1458週次)………89 圖 5-52 熱循環500週次純酚醛之疲勞破壞斷面(75482週次)…… 90 圖 5-53 熱循環500週次5wt% CNT/phenolic複材之疲勞破壞斷面(2283週次)…………………………………………………………… 90 圖 5-54 熱循環500週次5wt% CNT/phenolic複材之疲勞破壞斷面(94256週次)……………………………………………………………91

    1. http://www.asiateck.com.tw/index.htm亞特必股份有限公司。
    2. H. S. Katz and J. V. Milewski., “Handbook of fillers for plastics,” New York:/Van Nostrand Reninhold Co., (1987).
    3. 成會明, “奈米碳管,” 五南圖書出版股份有限公司, 台灣台北,2004.
    4. H. O. Fuch and R. I. Stephens, “Metal Fatigue in Engineering,” John Willy and Sons, New York, (1980).
    5. D. S. Saunders and G. Clark, “Fatigue Damage in Composite Laminates,” Materials Forum, Vol.17, (1993), pp.309-331.
    6. R. D. Jamison, K. Schulte, K. L. Reifsnider and W. W. Stinchcomb,“Characterization and Analysis of Damage Mechanisms in Tension-Tension Fatigue of Graphite/Epoxy Laminates,” Effects of Defects in Composite Materials, ASTM STP 836, American Society for Testing and Materials, (1984), pp.21-55.
    7. K. L. Reifsnider, E. G. Henneke, W. W. Stinchcomb and J. C. Duke, “Damage Mechanics and NDE of Composite Laminates,” Mechanics of Composite Materials, Recent Advance, Z. Hashin and C. T. Herakovich, eds., Pergamon Press, New York, (1983), pp.399-420.
    8. N. H. Tai,C. C. M. Ma and S. H. Wu, “Fatigue Behaviour of Carbon Fibre/PEEK Laminate Composites,” Composites, Vol.26, 1995,pp. 551-559.
    9. R. Talreja, “Fatigue of Composite Materials,” Technomic, Pennsylavania U.S.A., 1987.
    10. Hwang, W. and K. S. Han, “Fatigue of Composites Fatigue Modulus
    Concept and Life Prediction,” Journal of Composite Materials, Vol. 20, 1986, pp.154-165.
    11. W. P. Dewilde and P. Frolkovic, “The Modeling of Moisture Absorption in Epoxies: Effects at the Boundaries,” Composites, Vol. 25, No. 2, 1994, pp.111-119.
    12. O. K. Joshi, “The Effect of Moisture on the Shear Properties of Carbon Fiber Composites,” Composites, Vol. 14, No. 3, 1983, pp. 196-200.
    13. J. M. Barton and D. C. L. Greenfield, “The Use of Dynamic Mechanical Methods to Study the Effect of Absorbed Water on Temperature-Dependent Properties of an Epoxy Resin-Carbon Fiber Composites,” British Polymer Journal, Vol. 18, No. 1, 1986, pp. 51-56.
    14. C. E. Browning and J. T. Hartness, “Effect of Moisture on the Properties of High-Performance Structure Resins and Composites,” ASTM STP 546, 1974, pp. 284-302.
    15. S. M. Bishop, “Effect of Moisture on the Notch Sensitivity of Carbon Fibre Composites,” Composites, Vol. 14, No. 3, 1983, pp. 201-205.
    16. T. A. Collings, D. L. Mead and D. E. W. Stone, “The Effects of High Temperature Excursions on Environmentally Exposed CFC,” RAE Technical Report, TR 85074 (Royal Aircraft Establishment, Farnborough, UK), 1985.
    17. R. J. W. Donald and M. Michel, “Electromagnetic Shielding,” A handbook series on electromagnetic interference and compatibility, Vol. 3, chapter 2, 6 and 7, (1988).
    18. R. P. Clayton, “Introduction to Electromagnetic Compatibility,” Wiley series in Microwave and Optical Engineering, pp632-648,(1992).
    19. K. C. David, “Field and Wave Electromagnetic,” Reading , Mass.Addison Wesley, pp198-219, (1989).
    20. S. Iijima, “Helical microtubules of graphitic carbon,” Nature (1991), p.354-356.
    21. T. W. Odom, J. L. Huang, P. Kim and C.M. Lieber, “Structure and Electronic Properties of Carbon Nanotubes,” J. Phys. Chem. (2000), 2794-2809.
    22. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl and R. E. Smalley, Nature (1985), 318,162.
    23. http://nano.nchc.org.tw/dictionary/c60.html 奈米科學網
    24. S. Iijima and T. Ichlhashi, “Single-shell carbon nanotubes of 1-nm diameter,” Nature (1993), 363, 603–605.
    25. D. S. Bethune, C. H. Kiang, M. S. Devries, G. Gorman, R. Savoy and J. Vazquez, “Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls,” Nature (1993), 363, 605–607.
    26. C. Journet , W. K. Maser, P. Bernier, A. Loiseau, M. L. Chapelle and S. Lefrant, “Large-scale production of single-walled carbon nanotubes by the electric-arc technique,” Nature (1997), 388, 756–758.
    27. A. G. Rinzler, J. Liu, H. Dai, P. Nikolaev , C. B. Human and F. J. R. Macias, “Large-scale purication of single-wall carbon nanotubes: Process, product and characterization,” Applied Physics A (1998), 67(1), 29–37.
    28. P. Nikolaev, M. J. Bronikowski, R. K. Bradley, F. Fohmund, D. T. Colbert and K. A. Smith, “Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide,” Chemical Physics Letters (1999), 313(1-2), 91–97.
    29. Z. F. Ren, Z. P. Huang, J. W Xu., D. Z. Wang, J. G. Wen and J. H. Wang, “Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot,” Applied Physics Letters (1999), 75(8), 1086–1088.
    30. Z. F. Ren, Z. P. Huang, J. W. Xu, J. H. Wang, P. Bush and M. P. Siegal, “Synthesis of large arrays of well-aligned carbon nanotubes on glass,” Science (1998), 282, 1105–1107.
    31. A. N. Gent, J. Polymer Sci., A2, 10, 571 (1972).
    32. L. Nicholais and A. T. DiBenedetto, J. Appl. Polymer Sci., 15, 1585 (1971).
    33. M. Cochet, W. K. Maser, A. M. Benito, M. A. Callejas, M. T. Martinez and J. M. Benoit, “Synthesis of a new polyaniline/nanotube composite: “in-situ” polymerization and charge transfer through siteselective interaction,” Chem. Comm. (2001), 16, 1450–1451.
    34. S. Kumar, H. Doshi, M. Srinivasarao, J. O. Park and D. A. Schiraldi, “Fibers from polypropylene/nano carbon fiber composites,” Polymer (2002), 43, 1701–1703.
    35. D. Qian, E. C. Dickey, R. Andrews and T. Rantell, “Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites,” Applied Physics Letters (2000), 76(20), 2868–2870.
    36. A. Peigney, E. Flahaut, C. H. Laurent, F. Chastel and A. Rousset, “Aligned carbon nanotubes in ceramic-matrix nanocomposites prepared by high-temperature extrusion,” Chemical Physics Letters (2002), 352, 20–25.
    37. A. Allaoui, S. Bai, H. M. Cheng and J. B. Bai, “Mechanical and electrical properties of a MWNT/epoxy composite,” Composites Science and Technology 62 (2002) 1993–1998.
    38. D. S. Lim, J. W. An and H. J. Lee, “Effect of carbon nanotube addition on the tribological behavior of carbon/carbon composites,” Wear 252 (2002) 512–517.
    39. H. D. Wagner, O. Lourie, Y. Feldman and R. Tenne, “Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix,” Applied Physics Letters (1998), 72(2), 188–190.
    40. O. Lourie and H. D. Wagner, “Evidence of stress transfer and formation of fracture clusters in carbon nanotube-based composites,” Composites Science and Technology (1999), 59(6), 975–977.
    41.簡才智, “溫度-濕度效應對多壁奈米碳管/酚醛樹脂複合材料機
    械及電性質影響之研究,”清華大學動力機械工程研究所碩士論
    文,2005.
    42. S.L. Ruan, P. Gao, X.G. Yang, T.X. Yu, “Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes,” Polymer (2003);44(19):5643–54.

    43. Y.S. Song and J.R. Youn, “Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites,” Carbon (2005), 43, 1378-1385.
    44. W. Tang, M. H. Santare and S. G. Advani, “Melt processing and mechanical property characterization of multi-walled carbon nanotube/ high density polyethylene (MWNT/HDPE) composite films,” Carbon 41 (2003) 2779–2785.
    45. E. W. Wong, P. E. Sheehan and C. M. Lieber, “Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes,” Science 1997, 277(5334), 1971–5.
    46. J. M. Park, D. S. Kim, J. R. Lee and T. W. Kim, “Nondestructive damage sensitivity and reinforcing effect of carbon nanotube/epoxy composites using electro-micromechanical technique,” Materials Science and Engineering C 23 (2003) 971–975.
    47. J. M. Park, J. W. Kim and D. J. Yoon, J. Colloid Interface Science 247 (2002) 231.
    48. R. Andrews, M.C. Weisenberger, “Carbon nanotube polymer composites,” Current Opinion in Solid State and Materials Science 8 (2004) 31–37.
    49. K-T. Lau, D. Hui, “The revolutionary creation of new advanced materials–carbon nanotube composites,” Composites Part B (2002);33:263–77.
    50. Y. Ren, F. Li, H-M Cheng, K. Liao, “Tension–tension fatigue behavior of unidirectional single-walled carbon nanotube reinforced-epoxy composite,” Carbon (2003);41:2159–79.
    51. “Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials,” ASTM D3039-95a, (1998), pp.99-109.
    52. “Standard Test Method for Tension-Tension Fatigue of Polymer Matrix Composites,” ASTM D3479-96, (1998), pp133-138.
    53. ASTM Standard, ASTM designation: D570-98, “Standard Test Method for Water Absorption of Plastics,” (1998).
    54. “Test Methods for dc resistance or conductance of insulating materials,” ASTM D257 (1999).
    55. E. Dujardin, T. W. Ebbesen, A. Krishnan, P. N. Yianilos and M. M. J. Treacy, Phys. Rev. B (1998), 58, 14013.
    56. M. M. J. Treacy, T. W. Ebbesen and T. M. Gibson, “Exceptionally High young’s modulus observed for individual carbon nanotubes,” Nature (1996), 381, 678–680.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE