簡易檢索 / 詳目顯示

研究生: 陳冠潔
Chen, Kuan Chieh
論文名稱: 基於製程能力指標之產出績效檢定與驗收抽樣計畫操作平台建構
Developing an Operating Platform for Process Performance Assessment and Sampling Plans Based on Process Capability Indices
指導教授: 吳建瑋
Wu, Chien Wei
口試委員: 張國浩
蘇明鴻
廖茂原
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 109
中文關鍵詞: 驗收抽樣計畫製程能力指標圖形使用者介面
外文關鍵詞: Acceptance Sampling Plan, Process Capability Indices, Graphic User Interface
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 驗收抽樣計畫為品質管理領域中一項廣為使用的工具,透過買賣雙方所訂定的品質水準以及可承受之風險,以提供買賣雙方判定貨批品質水準是否在可接受之品質標準內。近年來,已有許多學者以製程能力指標為考量,發展出許多不同型態的計量型驗收抽樣計畫,然而,學術研究大多無法直接運用於產業界,其中可能原因包含其公式推導複雜、需要大量數學及統計的基礎等,導致學術上之研究無法應用於產業界。
    因此,本研究將建構一個操作平台,整合以製程能力指標發展產出績效檢定及計量型驗收抽樣計畫之相關文獻,以縮短學術與產業界之間的差距,此操作平台之功能包含兩大部分:第一部份為針對產出績效檢定,透過臨界值或p-value、信賴下界來評估產出績效是否符合標準;第二部分則為驗收抽樣計畫,根據不同策略的驗收抽樣計畫求解所需樣本數及臨界值,以及各驗收抽樣計畫之操作特性曲線和平均樣本數比較等兩大部分,其中驗收抽樣計畫包含計量型單次驗收抽樣計畫、計量型重複遞交驗收抽樣計畫、計量型重複群集驗收抽樣計畫、計量型多重相依狀態驗收抽樣計畫、計量型修改重複群集驗收抽樣計畫、計量型兩計畫驗收抽樣系統以及計量型快速轉換抽樣系統。最後,透過實務案例進行使用者介面操作,說明使用者如何將實務上所得到的產品數據透過本研究進行分析與判斷。


    Acceptance sampling plans are practical tools for quality control management which provide decision rules for lot acceptance determination between producers and customers. Those sampling plans provide both producers and customers a common rule to meet their preset requirements on product quality and allowable risk. Lots of researchers had developed different variables sampling plans based on process capability indices in the recent years. However, for their practical use in the industry applicable platforms are necessary. In order to shorten the gap between academic research and industry, in this paper, we develop an operating platform by combing process performance assessment and different sampling plans which are based on the both one-sided and two-sided process capability indices.
    The operating platform, which integrates seven different variables sampling plans and process performance assessment, can mainly be divided into three parts. First, obtaining critical value and sample size by solving two non-linear equations. Secondly, data analysis and decision-making. Lastly, comparing different variables sampling plans by operating characteristic (OC) curve and average sample size (ASN). The plan parameters are determined by solving two non-linear equations simultaneously and fulfill the two-point condition on the OC curve. The OC curve of all the proposed plans in this paper is derived under the exact sampling distribution.

    第一章 緒論 1 1.1研究背景與動機 1 1.2研究目的 2 1.3介面設計使用之軟體 3 1.3.1軟體介紹 3 1.3.2程式設計特色 4 1.4研究架構 5 第二章 文獻回顧 7 2.1驗收抽樣計畫 7 2.1.1驗收抽驗計畫簡介 7 2.1.2驗收抽驗計畫之分類 8 2.1.3驗收抽驗計畫之績效評估 9 2.2製程能力指標 12 2.3雙邊製程能力指標 13 2.3.1製程能力指標 與製程良率之關係 13 2.3.2製程能力指標 之估計 15 2.3.3製程能力指標 之抽樣分配 15 2.3.4製程能力指標 之假設檢定 16 2.4單邊製程能力指標 17 2.4.1製程能力指標 與製程良率之關係 18 2.4.2製程能力指標 之估計 20 2.4.3製程能力指標 之抽樣分配 20 2.4.4製程能力指標 之假設檢定 21 第三章 計量型抽樣計畫 23 3.1驗收抽樣計畫基於單邊製程能力指標 23 3.1.1計量型單次驗收抽樣計畫 23 3.1.1.1單次驗收抽樣計畫之操作步驟及檢驗流程圖 23 3.1.1.2計畫總允收機率函數 24 3.1.1.3計畫參數之數學模型 24 3.1.2重複遞交驗收抽樣計畫 25 3.1.2.1重複遞交驗收抽樣計畫之操作步驟及檢驗流程圖 25 3.1.2.2計畫總允收機率函數 26 3.1.2.3計畫參數之數學模型 27 3.1.3重複群集驗收抽樣計畫 27 3.1.3.1重複群集驗收抽樣計畫之操作步驟及檢驗流程圖 27 3.1.3.2計畫允收機率函數 28 3.1.3.3計畫參數之數學模型 29 3.1.4多重相依狀態驗收抽樣計畫 30 3.1.4.1多重相依狀態驗收抽樣計畫之操作步驟與檢驗流程圖 30 3.1.4.2計畫允收機率函數 31 3.1.4.3計畫參數之數學模型 32 3.1.5修改計量型重複群集驗收抽樣計畫 33 3.1.5.1修改重複群集驗收抽樣計畫之操作步驟與檢驗流程圖 33 3.1.5.2計畫允收機率函數 34 3.1.5.3計畫參數之數學模型 35 3.1.6兩計畫驗收抽樣系統 35 3.1.6.1兩計畫驗收抽樣系統之操作步驟與檢驗流程圖 36 3.1.6.2系統允收機率函數 38 3.1.6.3系統參數之數學模型 41 3.1.7快速轉換抽樣系統 43 3.1.7.1快速轉換抽樣系統操作步驟與檢驗流程圖 44 3.1.7.2系統允收機率函數 46 3.1.7.3系統參數之數學模型 47 3.2驗收抽驗計畫基於雙邊製程能力指標 50 3.2.1單次驗收抽樣計畫 50 3.2.1.1單次驗收抽樣計畫之操作步驟及檢驗流程圖 50 3.2.1.2計畫總允收機率函數 51 3.2.1.3計畫參數之數學模型 51 3.2.2重複遞交驗收抽樣計畫 52 3.2.2.1重複遞交驗收抽樣計畫之操作步驟及檢驗流程圖 52 3.2.2.2計畫總允收機率函數 52 3.2.2.3計畫參數之數學模型 53 3.2.3重複群集驗收抽樣計畫 53 3.2.3.1重複群集驗收抽樣計畫之操作步驟及檢驗流程圖 53 3.2.3.2計畫允收機率函數 54 3.2.3.3計畫參數之數學模型 55 3.2.4多重相依狀態驗收抽樣計畫 55 3.2.4.1多重相依狀態驗收抽樣計畫之操作步驟與檢驗流程圖 55 3.2.4.2計畫允收機率函數 56 3.2.4.3計畫參數之數學模型 57 3.2.5修改重複群集驗收抽樣計畫 57 3.2.5.1修改重複群集驗收抽樣計畫之操作步驟與檢驗流程圖 57 3.2.5.2計畫允收機率函數 58 3.2.5.3計畫參數之數學模型 59 3.2.6兩計畫驗收抽樣系統 59 3.2.6.1兩計畫驗收抽樣系統之操作步驟與檢驗流程圖 59 3.2.6.2系統允收機率函數 61 3.2.6.3系統參數之數學模型 63 3.2.7快速轉換抽樣系統 65 3.2.7.1快速轉換抽樣系統操作步驟與檢驗流程圖…………………65 3.2.7.2系統允收機率函數……………………………………………65 3.2.7.3系統參數之數學模型 67 第四章 各型態驗收抽樣計畫之軟體設計 71 4.1軟體設計架構 71 4.2軟體之操作說明 73 4.2.1輸入已知參數求解 75 4.2.2資料分析 82 4.2.3各計量型驗收抽樣計畫之比較 92 4.2.3操作平台說明 94 4.3實例操作 96 4.3.1輸入已知參數求解 96 4.3.2資料分析 99 4.3.3各計量型驗收抽樣計畫之比較 101 第五章 結論與未來發展 104 5.1結論 104 5.2未來發展 104

    [1] 鄭春生(2008)。「品質管理」修訂版。新北市:全華圖書。
    [2] 林志嘉(2014)。產品具單邊規格界限之計量型快速轉換驗收抽樣系統。碩士論文,國立台灣科技大學工業管理系,台北市。
    [3] 陳彥文(2014)。基於製程能力指標Cpk之新式計量型連鎖驗收抽樣計畫。碩士論文,國立清華大學工業工程與工程管理學系,新竹市。
    [4] 施美旭(2015)。基於製程績效指標之計量型快速轉換抽樣系統。碩士論文,國立清華大學工業工程與工程管理學系,新竹市。
    [5] 張簡致杰(2015)。具單邊規格界限產品之計量型多重相依狀態驗收抽樣計畫。碩士論文,國立清華大學工業工程與工程管理學系,新竹市。
    [6] 林佳臻(2016)。基於製程良率之計量型兩計畫驗收抽樣系統。碩士論文,國立清華大學工業工程與工程管理學系,新竹市。
    [7] Balamurali, S. and Jun, C. H. (2006). Repetitive group sampling procedure for variables inspection. Journal of Applied Statistics, 33(3), 327-338.
    [8] Balamurali, S. and Jun, C. H. (2007). Multiple dependent state sampling plans for lot acceptance based on measurement data. European Journal of Operational Research, 180(3), 1221-1230.
    [9] Balamurali, S. and Jun, C. H. (2009). Designing of a variables two-plan system by minimizing the average sample number. Journal of Applied Statistics, 36(10), 1159-1172.
    [10] Balamurali, S. and Usha, M. (2012). Variables quick switching system with double specification limits. International Journal of Reliability, Quality and Safety Engineering, 19(02), 1250008.
    [11] Balamurali, S. and Usha, M. (2014). Optimal designing of variables quick switching system based on the process capability index . Journal of Industrial and Production Engineering, 31(2), 85-94.
    [12] Calvin, T. W. (1977). TNT zero acceptance number sampling. In American Society for Quality Control Annual Technical Conference Transactions 24, 35-39.
    [13] Chou, Y. M. and Owen, D. (1989). On the distributions of the estimated process capability indices. Communications in Statistics-Theory and Methods, 18(12), 4549-4560.
    [14] Dodge, H. F. and Romig, H. (1929). A method of sampling inspection. Bell System Technical Journal, 8(4), 613-631.
    [15] Dodge, H. F. (1967). A new dual system of acceptance sampling. Technical Report, No. 16.
    [16] Juran, J. M. (1974). Quality control handbook, 3rd ed., McGraw-Hill, New Work, USA.
    [17] Kane, V. E. (1986). Process capability indices. Journal of Quality Technology, Corrigenda 265, 18, 41-52.
    [18] Kuralmani, V. and Govindaraju, K. (1992). Modified tables for the selection of quick switching systems for values of the given acceptable quality level and limiting quality level. Journal of Applied Statistics, 19, 263 - 271.
    [19] Kurniati, N., Yeh, R. H. and Wu, C. W. (2015a). A sampling scheme for resubmitted lots based on one-sided capability indices. Quality Technology & Quantitative Management, 12(4), 497-511.
    [20] Kurniati, N., Yeh, R. H. and Wu, C. W. (2015b). Designing a variables two-plan sampling system of type TNTVSS-( , ;k) for controlling process fraction nonconforming with unilateral specification limit. International Journal of Production Research, 53(7), 2011-2025.
    [21] Lee, A. H., Wu, C. W. and Chen, Y. W. (2015). A modified variables repetitive group sampling plan with the consideration of preceding lots information. Annals of Operations Research, 1-19.
    [22] Leone, F. C., Nelson, L. S. and Nottingham, R. B. (1961). The folded normal distribution. Technometrics, 3(4), 543-550.
    [23] Liu, S. W. and Wu, C. W. (2014). Design and construction of a variables repetitive group sampling plan for unilateral specification limit. Communications in Statistics-Simulation and Computation, 43(8), 1866-1878.
    [24] Montgomery, D. C. (2009). Introduction to Statistical Quality Control (6th Edition), Wiley, New York.
    [25] Muthuraj, D. and Senthilkumar, D. (2006). Designing and construction of tightened-normal-tightened variables sampling scheme. Journal of Applied Statistics, 33(1), 101-111.
    [26] Pearn, W. L. and Chen, K. S. (2002). One-sided capability indices and : decision making with sample information. International Journal of Quality and Reliability Management, 19(3), 221-245.
    [27] Pearn, W. L. and Lin, P. C. (2004). Testing process performance based on capability index with critical values. Computers & Industrial Engineering, 47(4), 351-369.
    [28] Pearn, W. L. and Shu, M. H. (2003). Manufacturing capability control for multiple power-distribution switch processes based on modified MPPAC. Microelectronics Reliability, 43, 6, 963-975.
    [29] Pearn, W. L. and Wu, C. W. (2006). Critical acceptance values and sample sizes of a variables sampling plan for very low fraction of defectives. Omega, 34(1), 90-101.
    [30] Pearn, W.L. and Wu, C.W. (2007). An effective decision making method for product acceptance. Omega, 35(1), 12-21.
    [31] Schilling, E. G. and Neubauer, D. V. (2008). Acceptance sampling in quality control (2nd Edition). Marcel Dekker Inc., New York.
    [32] Seidel, W. (1997). Is sampling by variables worse than sampling by attributes? A decision theoretic analysis and a new mixed strategy for inspecting individual lots. Sankhyā: The Indian Journal of Statistics, Series B, 59, 1, 96–107.
    [33] Senthilkumar, D. and Muthuraj, D. (2010). Construction and selection of tightened–normal–tightened variables sampling scheme of type TNTVSS ( , ; k). Journal of Applied Statistics, 37(3), 375-390.
    [34] Sherman, R. E. (1965). Design and evaluation of a repetitive group sampling plan. Technometris, 7(1), 11-21.
    [35] Soundararajan, V. and Vijayaraghavan, R. (1992). Construction and selection of tightened-normal-tightened sampling inspection scheme of type TNT-( , ; c). Journal of Applied Statistics, 19(3), 339-349.
    [36] Vännman, K. (1997). Distribution and moments in simplified form for a general class of capability indices. Communications in Statistics - Theory & Methods, 26, 159-179.
    [37] Vijayaraghavan, R. and Soundararajan, V. (1996). Procedures and tables for the selection of tightened-normal-tightened (TNT-(n; c1, c2)) sampling schemes. Journal of Applied Statistics, 23(1), 69-80.
    [38] Wortham, A. W. and Baker, R. C. (1976). Multiple deferred state sampling inspection. The International Journal of Production Research, 14(6), 719-731.
    [39] Wu, C. W., Aslam, M., Chen, J. C. and Jun, C. H. (2015). A repetitive group sampling plan by variables inspection for product acceptance determination. European Journal of Industrial Engineering, 9(3), 308-326.
    [40] Wu, C.W., Aslam, M. and Jun, C. H. (2012). Variables sampling inspection scheme for resubmitted lots based on the process capability index. European Journal of Operational Research, 217(3), 560-566.
    [41] Wu, C. W., Aslam, M. and Jun, C. H. (2016). Developing a variables two-plan sampling system for product acceptance determination. Communications in Statistics-Theory and Methods. DOI: 10.1080/03610926.2015.1004092
    [42] Wu, C. W., Lee, A. H. and Chen, Y. W. (2015). A novel lot sentencing method by variables inspection considering multiple dependent state. Quality and Reliability Engineering International.
    [43] Wu, C. W., Wang, Z. H. and Shu, M. H. (2015). A lots-dependent variables sampling plan considering supplier’s process loss and buyer’s stipulated specifications requirement. International Journal of Production Research, 53(20), 6308-6319.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE