研究生: |
陳昶志 Chen, Chang-chih |
---|---|
論文名稱: |
高功率飛秒及亞奈秒雷射放大器 High Power Femto-second and Sub-nano-second Laser Amplifiers |
指導教授: |
黃衍介
Huang, Yen-Chieh |
口試委員: |
李晁逵
羅志偉 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 69 |
中文關鍵詞: | 高功率雷射 、雷射放大器 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
High-power laser amplifiers have attracted substantial attention in recent years, because they have stimulated research on high-field laser-matter interactions. In our laboratory, we are aiming to develop a source of electron beam by laser induced photoemission in a particle accelerator. We are therefore interested in developing suitable, high-power laser sources to efficiently generate high-energy electrons. In this thesis, the properties of femto-second and sub-nano second laser amplifiers are demonstrated and studied based on the chirped-pulse amplification (CPA) technique and flashlamp-pumped laser amplifier system, respectively.
In this thesis, we investigated flash-lamp-pumped laser amplifiers with three distinct laser gain media, Nd: YAG, Nd: glass, and Er: Yb: Cr: glass. These systems adopt a pump chamber housing the gain medium with a side-pumped Kr-arc lamp. For the Nd:YAG amplifier system, the maximum output pulse energy can be higher than 4 mJ at 1064 nm with a signal gain of 109.
For the Ti: Sapphire laser amplifier based on the CPA technique, the crystal was damaged before sufficient data can be obtained. However, a discussion on the already-taken data and corresponding suggestions are provided at the end of this thesis. Further experimental efforts on this subject are currently underway.
[1] M. Aoyama, K. Yamakawa, Y. Akahane, J. Ma, N. Inoue, H. Ueda, and H. Kiriyama, “0.85-PW, 33-fs Ti:sapphire laser,” Opt. Lett., vol. 28, pp. 1594- 1596, 2003.
[2] Erhard W. Gaul,1,* Mikael Martinez,1 Joel Blakeney et al, “Demonstration of a 1.1 petawatt laser based on a hybrid optical parametric chirped pulse amplification/mixed Nd:glass amplifier,” Appl. Opt. vol. 49, No. 9, pp. 1676- 1681, 2010.
[3] Donna Strickland and Gerard MouRou, “Compression of Amplified Chirped Optical Pulses,” Opt. Commun., vol. 56, pp. 219-221, 1985.
[4] B. E. Lemoff, C. P. J. Barty, and S. E. Harris, “Femtosecond-pulse-driven, electron excited XUV lasers in eight-times-ionized noble gases,” Opt. Lett. Vol. 19, pp. 569-571, 1994
[5] B. E. Lemoff, G. Y. Yin, C. L. Gordon III, C. P. J. Barty, and S. E. Harris, “Demonstration of a 10-Hz Femtosecond-Pulse-Driven XUV Laser at 41.8 nm in Xe IX,” Phys. Rev. Lett., Vol. 74, pp. 1574-1577 , 1995.
[6] Mike Dunne, “A high-power laser fusion facility for Europe,” Nature Phys., Vol. 2, pp. 2-5, 2006.
[7] W. P. LEEMANS1*†, B. NAGLER1, A. J. GONSALVES et al, “GeV electron beams from a centimetre-scale accelerator,” nature physics, vol. 2, pp. 696-699, 2006.
[8] S. Ya. Tochitsky , R. Narang , C.V. Filip, “Acceleration of Injected electrons in a Laser Beatwave Accelerator,” Proceedings of the 2003 Particle Accelerator Conference, pp. 1873-1875.
[9] C. H. Chen, Y. C. Huang, K. Y. Huang, W. K. Lau, “THz-Pulse-Train photoinjector,” Proceedings of IPAC’10, Kyoto, Japan, pp. 2236-2238.
[10] Brian McNeil, “First light from hard X-ray laser,” nature photonics, pp. 375-377, 2009
[11] G. N. Kulipanov, N.G. Gavrilov, B.A. Knyazev, et al., “Research Highlights from the Novosibirsk 400 W average power THz FEL,” THz Science and Technology, Vol.1, No.2, pp107-125, 2008.
[12] J.F. Schmergea, M. Hernandeza, Mi. Hogana et al, “Photocathode RF Gun Emittance Measurements Using Variable Length Laser Pulses,” in SPIE Conference on Free Electron Laser Challenges, 2988, p. 22-32, San Jose, CA, 1999.
[13] W. Koechner, “Solid-State Laser Engineering”, Sixth Revised and Updated Edition, Springer Series in OPTICAL SCIENCES
[14] Juan A. Vallés, Miguel A. Rebolledo, and Jesús Cortés, “Full Characterization of Packaged Er–Yb-Codoped Phosphate Glass Waveguides,” IEEE J. Quantum Electron., vol. 42, no. 2, pp. 152–159, 2006.
[15] D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. Vol. 56, pp. 219- 221, 1985.
[16] C. Kim, S. J. Park, J. H. Park, et al., “Laser System of Photocathode RF Gun at Pohang Accelerator Laboratory,” Proc. of FLS Hamburg, Germany, 2006.
[17] LEE M. FRANTZ, et. Al., “Theory of Pulse Propagation in a Laser Amplifier,” J. Appl. Phys. Vol. 34, 2346, 1963
[18] http://frog.gatech.edu/UFOBook/14-Amplifiers-Squier-et-al.pdf
[19] 尤仁弘, “Construction of an Ultra-Broad Power Amplifiers of a 100-TW Ultra-Short Pulse Laser System”, master degree thesis in NCCU, 2009.
[20] Hermann A. Haus, “Waves and Fields in Optoelectronics” (Prentice-Hall Inc., Eaglewood Cliffs, New Jersey, 1984)
[21] 蔡坤昇, “Construction of an Ultra-Broad Preamplifier of a 100-TW Ultra-Short Pulse Laser System”, master degree thesis in NCCU, 2007
[22] E. G. Loewen, M. Neviere and D. Maystre, “Grating efficiency theory as it applies to blazed and holographic gratings,” Appl. Opt. Vol. 16, pp. 2711-2721, 1977
[23] 徐家仁, “Dispersion Compensation in a Ten-Terawatt Ultrashort Pulse Laser System,” Master degree thesis, NTU, 2001.
[24] V. Magni. G. Cerullo, S. De Silvestri, “ABCD matrix analysis of propagation of gaussian beams through Kerr media,” Optics Comm. 96 (1993) 348.