簡易檢索 / 詳目顯示

研究生: 陳昶志
Chen, Chang-chih
論文名稱: 高功率飛秒及亞奈秒雷射放大器
High Power Femto-second and Sub-nano-second Laser Amplifiers
指導教授: 黃衍介
Huang, Yen-Chieh
口試委員: 李晁逵
羅志偉
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 69
中文關鍵詞: 高功率雷射雷射放大器
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • High-power laser amplifiers have attracted substantial attention in recent years, because they have stimulated research on high-field laser-matter interactions. In our laboratory, we are aiming to develop a source of electron beam by laser induced photoemission in a particle accelerator. We are therefore interested in developing suitable, high-power laser sources to efficiently generate high-energy electrons. In this thesis, the properties of femto-second and sub-nano second laser amplifiers are demonstrated and studied based on the chirped-pulse amplification (CPA) technique and flashlamp-pumped laser amplifier system, respectively.
    In this thesis, we investigated flash-lamp-pumped laser amplifiers with three distinct laser gain media, Nd: YAG, Nd: glass, and Er: Yb: Cr: glass. These systems adopt a pump chamber housing the gain medium with a side-pumped Kr-arc lamp. For the Nd:YAG amplifier system, the maximum output pulse energy can be higher than 4 mJ at 1064 nm with a signal gain of 109.
    For the Ti: Sapphire laser amplifier based on the CPA technique, the crystal was damaged before sufficient data can be obtained. However, a discussion on the already-taken data and corresponding suggestions are provided at the end of this thesis. Further experimental efforts on this subject are currently underway.


    Abstract iii Acknowledgements iv Table of Contents v Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Laser Amplifier 4 1.3 Chirped Pulse Amplification (CPA) 7 1.4 RF Synchronized System 8 1.5 Overview of the Thesis 10 Chapter 2 Physical Mechanisms 11 2.1 Flashlamp-pumped Laser Amplifier 11 2.2 Mechanism of Chirped Pulse Amplification 14 2.2.1 Mechanism and Design of Chirp of Laser Pulse 15 2.2.2 Mechanism and Simulation of Multi-pass Amplification 19 2.2.3 Common issues in CPA 24 2.3 Kerr-lens Mode-locked Ti: Sapphire Oscillator 26 2.3.1 Mechanism of Kerr-lens Mode-locked Oscillator 26 2.3.2 Cavity Simulation for RF synchronization 30 Chapter 3 Experimental Results and Discussions 35 3.1 Flashlamp Pumped Laser Amplifier 35 3.1.1 Nd: YAG Amplifier 37 3.1.2 Nd: glass Amplifier 38 3.1.3 Er: Yb: Cr: glass Amplifier 40 3.2 Configurations of the CPA System 42 3.3 Experimental Results of CPA amplifier 43 Chapter 4 Conclusions and Future Works 53 Appendix A Oscillator Stability Simulation 54 Appendix B Gain Simulation of M-pass Amplifier 63 Reference 67

    [1] M. Aoyama, K. Yamakawa, Y. Akahane, J. Ma, N. Inoue, H. Ueda, and H. Kiriyama, “0.85-PW, 33-fs Ti:sapphire laser,” Opt. Lett., vol. 28, pp. 1594- 1596, 2003.
    [2] Erhard W. Gaul,1,* Mikael Martinez,1 Joel Blakeney et al, “Demonstration of a 1.1 petawatt laser based on a hybrid optical parametric chirped pulse amplification/mixed Nd:glass amplifier,” Appl. Opt. vol. 49, No. 9, pp. 1676- 1681, 2010.
    [3] Donna Strickland and Gerard MouRou, “Compression of Amplified Chirped Optical Pulses,” Opt. Commun., vol. 56, pp. 219-221, 1985.
    [4] B. E. Lemoff, C. P. J. Barty, and S. E. Harris, “Femtosecond-pulse-driven, electron excited XUV lasers in eight-times-ionized noble gases,” Opt. Lett. Vol. 19, pp. 569-571, 1994
    [5] B. E. Lemoff, G. Y. Yin, C. L. Gordon III, C. P. J. Barty, and S. E. Harris, “Demonstration of a 10-Hz Femtosecond-Pulse-Driven XUV Laser at 41.8 nm in Xe IX,” Phys. Rev. Lett., Vol. 74, pp. 1574-1577 , 1995.
    [6] Mike Dunne, “A high-power laser fusion facility for Europe,” Nature Phys., Vol. 2, pp. 2-5, 2006.
    [7] W. P. LEEMANS1*†, B. NAGLER1, A. J. GONSALVES et al, “GeV electron beams from a centimetre-scale accelerator,” nature physics, vol. 2, pp. 696-699, 2006.
    [8] S. Ya. Tochitsky , R. Narang , C.V. Filip, “Acceleration of Injected electrons in a Laser Beatwave Accelerator,” Proceedings of the 2003 Particle Accelerator Conference, pp. 1873-1875.
    [9] C. H. Chen, Y. C. Huang, K. Y. Huang, W. K. Lau, “THz-Pulse-Train photoinjector,” Proceedings of IPAC’10, Kyoto, Japan, pp. 2236-2238.
    [10] Brian McNeil, “First light from hard X-ray laser,” nature photonics, pp. 375-377, 2009
    [11] G. N. Kulipanov, N.G. Gavrilov, B.A. Knyazev, et al., “Research Highlights from the Novosibirsk 400 W average power THz FEL,” THz Science and Technology, Vol.1, No.2, pp107-125, 2008.
    [12] J.F. Schmergea, M. Hernandeza, Mi. Hogana et al, “Photocathode RF Gun Emittance Measurements Using Variable Length Laser Pulses,” in SPIE Conference on Free Electron Laser Challenges, 2988, p. 22-32, San Jose, CA, 1999.
    [13] W. Koechner, “Solid-State Laser Engineering”, Sixth Revised and Updated Edition, Springer Series in OPTICAL SCIENCES
    [14] Juan A. Vallés, Miguel A. Rebolledo, and Jesús Cortés, “Full Characterization of Packaged Er–Yb-Codoped Phosphate Glass Waveguides,” IEEE J. Quantum Electron., vol. 42, no. 2, pp. 152–159, 2006.
    [15] D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. Vol. 56, pp. 219- 221, 1985.
    [16] C. Kim, S. J. Park, J. H. Park, et al., “Laser System of Photocathode RF Gun at Pohang Accelerator Laboratory,” Proc. of FLS Hamburg, Germany, 2006.
    [17] LEE M. FRANTZ, et. Al., “Theory of Pulse Propagation in a Laser Amplifier,” J. Appl. Phys. Vol. 34, 2346, 1963
    [18] http://frog.gatech.edu/UFOBook/14-Amplifiers-Squier-et-al.pdf
    [19] 尤仁弘, “Construction of an Ultra-Broad Power Amplifiers of a 100-TW Ultra-Short Pulse Laser System”, master degree thesis in NCCU, 2009.
    [20] Hermann A. Haus, “Waves and Fields in Optoelectronics” (Prentice-Hall Inc., Eaglewood Cliffs, New Jersey, 1984)
    [21] 蔡坤昇, “Construction of an Ultra-Broad Preamplifier of a 100-TW Ultra-Short Pulse Laser System”, master degree thesis in NCCU, 2007
    [22] E. G. Loewen, M. Neviere and D. Maystre, “Grating efficiency theory as it applies to blazed and holographic gratings,” Appl. Opt. Vol. 16, pp. 2711-2721, 1977
    [23] 徐家仁, “Dispersion Compensation in a Ten-Terawatt Ultrashort Pulse Laser System,” Master degree thesis, NTU, 2001.
    [24] V. Magni. G. Cerullo, S. De Silvestri, “ABCD matrix analysis of propagation of gaussian beams through Kerr media,” Optics Comm. 96 (1993) 348.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE