簡易檢索 / 詳目顯示

研究生: 黎禹辰
Yu-Chen Li
論文名稱: 含預製鋯介層之奈米晶氮化鋯薄膜製程及性質之研究
Study of Deposition Process and Properties for ZrN on Si(100) Substrate with Pre-existed Zr Interlayer
指導教授: 黃嘉宏
Jia-Hong Huang
喻冀平
Ge-Ping Yu
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 66
中文關鍵詞: 氮化鋯介層厚度
外文關鍵詞: ZrN, interlayer, thickness
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文目的在研究中空陰極放電離子鍍著系統中,預製鋯介層之厚度對於奈米晶氮化鋯薄膜的成分、結構與機械性質的影響。實驗結果顯示,在該系統中鍍著純鋯層時,很難防止氮的汙染,並且在加熱及鍍著過程中,二氧化鋯的形成更是無法避免。在成功鍍著出含鋯介層的試片中,鋯介層中的氧化反應深度最高達到158nm,這是因為形成二氧化鋯層後,該氧化層會妨礙外界的氧繼續擴散至介層內部造成氧化。在所有試片中,氮化鋯薄膜都呈現(111)的優選方向。隨著氮化鋯薄膜的厚度增加,其電阻率隨之降低。隨著介層的加入,薄膜的殘餘應力被釋放,但其硬度並未有顯著變化。因此殘餘應力的釋放對硬度的改變並無影響。


    Nano-crystalline ZrN thin films were successfully deposited on p-type Si(100) substrates and pre-existed zirconium interlayer using the hollow cathode discharge ion plating (HCD-IP) system. The effects of interlayer thickness on the composition, structures and mechanical properties of the ZrN coatings were investigated. The results showed that it is extremely difficult to deposit a pure zirconium layer without the contamination of N, moreover, the formation of ZrO2 seems to be inevitable during heating and deposition process of ZrN film using the HCD-IP system. The reaction depth of oxidation in Zr interlayer was up to 158 nm because the formation of ZrO2 may hinder the diffusion of oxygen into Zr underlayer and thereby terminating the advancing of ZrO2/Zr interface. The preferred orientation (111) was dominant in ZrN films for all specimens. The resistivity decreased with increasing the thickness of ZrN layer of the film. With an interlayer introduced, the residual stress was released, but the hardness did not change significantly. Therefore the release of residual stress had no relationship with the hardness.

    Table of Contents Chapter 1 Introduction 1 Chapter 2 Literature Review 4 2.1 Hollow Cathode Discharge Ion Plating (HCD-IP) 4 2.2 Characteristics of ZrN 7 2.3 The Effect of Interlayer 9 Chapter 3 Experimental Details 11 3.1 Coating Process 12 3.1.1 Preparation of Substrate Material 12 3.1.2 Coating Process of Zr interlayer 12 3.1.3 Coating Process of ZrN 14 3.2 Structure and Composition Characterization 18 3.2.1 Thickness and Microstructure 18 3.2.2 Structure 18 3.2.3 Compositions 19 3.2.4 Depth Profile 20 3.3 Properties Characterization 21 3.3.1 Electrical Resistivity 21 3.3.2 Hardness 23 3.3.3 Residual Stress 24 Chapter 4 Results And Discussion 26 4.1 The Zr interlayer 26 4.2 The Structure of ZrN with Pre-existed Zr Interlayer 31 4.3 N/Zr ratios and Packing Factor 55 4.4 Electrical Resistivity 59 4.5 Hardness 59 4.6 Residual Stress 60 Chapter 5 Conclusions 61 References 63 Lists of Figures Fig. 2.1 Schematic diagram of a working hollow cathode Ta pipe 6 Fig. 2.2 The crystal structure of a stoichiometric ZrN 8 Fig. 2.3 The planar density of different crystalline planes for ZrN film [18] 8 Fig. 3.1 Flowchart of experimental procedures 11 Fig. 3.2 Schematic diagram of the hallow cathode discharge ion plating (HCD-IP) system 16 Fig. 3.3 Schematic diagram of the four-point probe. 22 Fig. 4.1 SEM image of a “ZrN/Zr” two-layer specimen deposited by HCD-IP. 27 Fig. 4.2 The AES depth profile of the two-layer specimen shown in Fig. 4.1. 28 Fig. 4.3 The XRD pattern of the two-layer specimen deposited by HCD-IP. 28 Fig. 4.4 The XRD pattern of Zr monolayer coated by UBMS system. 29 Fig. 4.5 (a) The AES depth profiles of specimen S11. 39 Fig. 4.5 (b) The schematic diagram of specimen S11. 39 Fig. 4.5 (c) The XRD pattern of specimen S11. 40 Fig. 4.5 (d) The GIXRD pattern of specimen S11. 41 Fig. 4.6 (a) The AES depth profiles of specimen S21. 42 Fig. 4.6 (b) The schematic diagram of specimen S21. 42 Fig. 4.6 (c) The XRD pattern of specimen S21. 43 Fig. 4.6 (d) The GIXRD pattern of specimen S21. 44 Fig. 4.7 (a) The AES depth profiles of specimen S12. 45 Fig. 4.7 (b) The schematic diagram of specimen S12. 45 Fig. 4.7 (c) The XRD pattern of specimen S12. 46 Fig. 4.7 (d) The GIXRD pattern of specimen S12. 47 Fig. 4.8 (a) The AES depth profiles of specimen S22. 48 Fig. 4.8 (b) The schematic diagram of specimen S22. 48 Fig. 4.8 (c) The XRD pattern of specimen S22. 49 Fig. 4.8 (d) The GIXRD pattern of specimen S22. 50 Fig. 4.9 The AES depth profiles of heat treated Zr monolayer 51 Fig. 4.10 The SEM images of specimen S11, S12, S21 and S22. 52 Fig. 4.11 The SEM images of specimen S01, S02 and S03. 53 Fig. 4.12 The XRD pattern of specimen S01, S02 and S03. 54 Fig. 4.13 The RBS spectrum and fitting curve of S02 57 Fig. 4.14 The RBS spectrum and fitting curve of S12 58 Lists of Tables Table 3.1 The coating conditions of Zr interlayer in UBM system [35] 13 Table 3.2 The coating conditions of ZrN film in HCD-IP system [35] 17 Table 3.3 The coating durations of ZrN film and the design thickness 17 Table 3.4 Geometrical correction factor [40] 22 Table 4.1 Summary of experimental results of ZrN films deposited on Si(100) and on Si with pre-existed Zr interlayer 30

    6 REFERENCES

    1. I. Milosev et al., Thin Solid Films, 303 (1997) 246.
    2. P. Panjan, B. Navisek, A. Zabkar, Dj. Mandrino, J. Fiser, Thin Solid Films, 228 (1993) 233.
    3. P. C. Johnson, H. Randhawa, Surf. Coat. Technol., 33 (1987) 53.
    4. J. H. Huang, Y. P. Tsai, G. P. Yu, Thin Solid Films, 356 (1999) 440.
    5. L.E. Toth, “Transition Metal Carbides and Nitrides”, Academic press, New York, 1971, p.188.
    6. U. K. Wiiala, I. M. Penttinen, A. S. Korhonen, Surf. Coat. Technol., 41 (1990) 191.
    7. E. Budke, J. Krempel-Hesse, H. Maidhof, H. Schussler, Surf. Coat. Technol., 112 (1999) 108.
    8. W. Ensinger., Mater. Sci. Eng., A1-4 (1998) 116.
    9. I .Milosev et al., Surf. Int. Anal., 24 (1996) 448.
    10. R. Brown, M. N. Alias, Surf. Coat. Technol., 62 (1993) 467.
    11. L .Van Leaven et al., Surf. Coat. Technol., 53 (1992) 25.
    12. P. C. Johnson and H. Randhawa, Surf. Coat. Technol., 33 (1987) 53.
    13. S. Han, J. H. Lin, X. J. Guo, et al., Thin Solid Films, 377/378 (2000) 578.
    14. F, B, Wu, J. J. Li, j. G. Duh, Thin Solid Films, 377/378 (2000) 354-359.
    15. M. Ohring, The Materials Science of Thin Films, Academic Press Inc, San Diego, 1992, p.511.
    16. R. A. Dugdale, J. Mater. Sci., 1 (1966) 160.
    17. W. J. Chou, G. P. Yu, J. H. Huang, Surf. Coat. Technol., 149 (2002) 7.
    18. T. Miri, S. Fukuda, Y. Takemura, Surf. Coat. Technol., 140 (2001) 122.
    19. E. T□rok, A. J. Perry, L. Chollet, W. D. Sproul, Thin Solid Films, 153 (1987) 37.
    20. J. Musil, J. Wolfe, Mater. Sci. Eng., A163 (1993) 211.
    21. P. Jin, S. Maruno, Jpn. J. Appl. Phys., 30(7) (1991) 1463.
    22. J. H. Huang, C. Y. Hsu, S. S. Chen, G. P. Yu, Mater. Chem. Phys., 77 (2002) 14.
    23. W. J. Chou, G. P. Yu, J. H. Huang, Thin Solid Films, 405 (2002) 162.
    24. J. A. Thorton, D. W. Hoffman, Thin Solid Films, 171 (1989) 81.
    25. S. Veprek, A. Niederhofer, K. Moto, T. Bolom, H. D. Mnnling, P. Nesladek, G. Dollinger, et. al., Surf. Coat. Technol., 133-134 (2000) 152.
    26. E. Kusano, M. Kitagawa, A. Satoh, T. Kobayashi, H. Nanto, A. Kinbara, Nanostruct. Mater., 12 (1999) 807.
    27. N. Kikuchi, M. Kitagawa, A. Sato, E. Kusano, H. Nanto, A. Kinbara, Surf. Coat. Technol., 126 (2000) 131.
    28. W. L. Pan, G. P. Yu, J. H. Huang, Surf. Coat. Technol., 110 (1998) 111.
    29. J. Y. Chen, G. P. Yu, J. H. Huang, Mater. Chem. Phys., 65 (2000) 310.
    30. B. F. Chen, W. L. Pan, G. P. Yu, J. Hwang, J. H. Huang, Surf. Coat. Technol., 111 (1999) 16.
    31. L. Hultman, S. A. Barnett, J. E. Sundgren, J. E. Greene, J. of Cryst. Growth, 92 (1988) 639.
    32. M. Leoni, P. Scardi, S. Rossi, L. Fedrizzi, Y. Massiani, Thin Solid Films, 345 (1999) 263.
    33. A. Schroer, W. Ensinger, G. K. Wolf, Mater. Sci. Eng., A140 (1991) 625.
    34. L. Cunha, M. Andritschky, Surf. Coat. Technol., 111 (1999) 158.
    35. W. J. Chou, C. H. Sun, G. P. Yu, J. H. Huang, Mater. Chem. Phys., 82 (2003) 228.
    36. H. C. Yang, Thesis “Effect of Thickness on the Structure and Properties of Nanocrystalline ZrN Thin Film Deposited by Ion Plating”, 2003, National Tsing Hua University, R.O.C..
    37. P. Scherrer, G□tt. Nachr, 2 (1918) 98.
    38. Leonid V. Azaroff and Martin J. Buerger, “The Powder Method in X-Ray Crystallography”, McGraw-Hill, New York, 1958, p.233.
    39. W. J. Chou, G. P. Yu, J. H. Huang, Corrs. Sci., 43 (2001) 2023.
    40. S.M. Sze, “VLSI Technology”, AT&T Bell Laboratories, Murray Hill, New Jersey, (1983) 184.
    41. S. Chatterjee, T. S. Sudarshan, S. Chandrashekhar, J. Mater. Sci., 27 (1992) 1989.
    42. C. H. Ma, J. H. Huang, Haydn Chen, Thin Solid Films, 418 (2002) 73.
    43. W. C. Oliver, G. M. Pharr, J. Mater. Res., 7 (1992) 1564.
    44. J. H. Huang, K. H. Chang, G. P. Yu, Surf. Coat. Technol., 201 (2007) 6404.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE