簡易檢索 / 詳目顯示

研究生: 周書煒
Chou, Shu-Wei
論文名稱: MiR-200a-3p 在口腔癌細胞侵襲過程中對 EZH2 的後轉錄調控
The post-transcriptional regulation of EZH2 by miR-200a-3p during oral cancer cell invasion
指導教授: 陳令儀
Chen, Linyi
口試委員: 王翊青
Wang, I-Ching
鄭世進
Cheng, Shih-Chin
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 57
中文關鍵詞: 口腔癌組蛋白甲基轉移酶小分子核糖核酸
外文關鍵詞: EZH2, miRNA, miR-200a-3p, Oral cancer, Interleukin-8
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 口腔癌是最常見的頭頸癌之一,有90%的口腔癌源於口腔鱗狀細胞癌。口腔癌細胞的轉移會明顯地降低口腔癌病人的存活率。在實驗室先前的研究中指出低表現量的EZH2會伴隨口腔癌細胞的高度侵襲性。EZH2是polycomb repressive complex 2的一部分並且能作為組蛋白甲基轉移酶使histone H3 lysine 27甲基化。在低侵襲性的口腔癌細胞OC3中knockdown EZH2會促進口腔癌細胞的遷移與侵襲性。我們發現EZH2可以在口腔癌細胞中作為抑癌基因,低表現量的EZH2還會造成口腔癌細胞的高遷移侵襲性。在本研究中,miRanda、Diana-microT和miRWork等線上程式被用來在miRNA array資料中過濾並選出可能會在高度侵襲性口腔癌細胞中標靶EZH2的miRNA。我們發現在高度侵襲性的口腔癌細胞中,高表現的miR-200a-3p伴隨低表現的EZH2。過量表現miR-200a-3p會降低EZH2的表現量並同時促進口腔癌細胞的侵襲性。從ChIP的實驗中,我們發現miR-200a基因在轉錄啟始點附近的H3K27me3修飾在高侵襲性的口腔癌細胞中是降低的。從ENCODE和JASPAR CORE網站資料的分析當中,我們也發現了USF2、ZBTB7A和STAT1在miR-200a轉錄起始點的結合位。ChIP的實驗中則顯示ZBTB7A會對miR-200a的轉錄進行調控。其次,IL-8的添加也會促進miR-200a-3p的表現。因此,我們發現在口腔癌細胞侵襲過程中,miR-200a-3p表現量的提昇會降低EZH2的表現量。


    Oral cancer is the most common head and neck cancers and more than 90% of oral cancer results from oral squamous cell carcinoma (OSCC). OSCC cells metastasis significantly reduces survival rate of oral cancer patients. In our previous study, we found that low expressions of EZH2 associate with increased invasiveness of OSCC cell lines. EZH2, part of PRC2 complex (Polycomb Repressive Complex 2), is a histone lysine methyltransferase that adds methyl groups to the H3K27. Knockdown of EZH2 in low invasive cell line, OC3, enhances migration/invasion of OSCC cells. Accordingly, we found EZH2 can act as a tumor suppressor gene, and the reduced expression of EZH2 led to increased cell migration/invasion in OSCC cell lines. In this study, miRanda, Diana-microT and miRWork prediction software were used to screen and select miRNAs targeting EZH2 mRNA from miRNA array data. Our results suggested that high expression of miR-200a-3p correlated to low expression of EZH2 and highly invasive OSCC cell lines, and overexpression of miR-200a-3p might promote migration and invasion in oral cancer cells. By doing Chromatin immunoprecipitation (ChIP) analysis, reduced H3K27me3 marks at miR-200a promoter region and increased ZBTB7A occupancy were found to orchestrate the upregulation of miR-200a-3p in the highly invasive OSCC cells compared to OC3 cells. In addition, IL-8 was upregulated in the highly invasive OSCC cells. IL-8 treatment also upregulated the expression of miR-200a-3p. In conclusion, upregulation of miR-200a-3p might suppress EZH2 expression during oral cancer invasion.

    Index Abstract…………………………………………………………………...……………….i 中文摘要………………………………………………………………..….………….…..ii 致謝……………………………………………………………………………………….iii Index……………………………………..…………………………….………..………..v Abbreviation……………………………..…………………………………..………..viii Introduction……………………………..…………………………….………..……...…1 Oral cancer…………………………………………………….……………….……1 Cancer metastasis……………………..…………………………….……….....……2 Histone modifications………………………..……………………………..……….3 Enhancer of zeste homolog 2 (EZH2) ………………………..….………..…………3 MicroRNAs (miRNAs) …………………………………………….…………….…5 MiRNAs in cancer………………………..…………………………………………5 MiR-200 family………………………..……………………………………………6 Signal transducer and activator of transcription (STAT1) ………………….………7 Zinc finger and BTB domain containing 7A (ZBTB7A) ……………………… ….8 Interleukin-8 (IL-8) ………………………..……………………………………….8 Interleukin-6 (IL-6) ………………………..……………………………………….9 Materials and Methods………………………..………………………………………..11 Vectors and reagents………………………..………………………………………11 Cell lines and cell culture………………………..…………………………………11 MiRNA, miRNA sponge construct and miRNA mimic……………………………12 Lentivirus infection and transient transfections……………………………………13 Boyden chamber assays………………………..………………………………..…13 Total RNA extraction, reverse transcription polymerase chain reaction (RT-PCR), polymerase chain reaction (PCR), semi-quantitative real-time polymerase chain reaction (QPCR) …………………………………..………………………….……14 MiRNA quantification………………………..……………………………………14 Protein extraction and Western blot analysis…………………………………15 Chromatin immunoprecipitation (ChIP) analysis…………………………………15 MiRNAs analysis………………………..…………………………………………16 Statistical analysis………………………………………………………..………16 Results………………………..………………………………………………………18 The expressions of EZH2 are reduced in highly invasive OSCC cell lines…………18 Selection of miRNAs that may target EZH2 mRNA…………………………18 Correlation among miRNAs, EZH2 and invasion of OSCC cell lines…………19 MiR-200a-3p regulates cancer cells migration, invasion and the expression of EZH2 in OSCC cell lines. …………………………………………………………20 H3K27me3 histone marks were reduced at miR-200a promoter…………………20 Candidate transcription factors that might regulate expression of miR-200a-3p in the highly invasive OSCC cells………………………....…………………………21 Cytokines induced the expression of miR-200a-3p in oral cancer cells…………22 Discussion……………………………………………………………………………….24 Figures…………………………………………………………………….……………28 Figure 1. The expressions of EZH2 reduce in highly invasive OSCC cell lines…28 Figure 2. The expressions of miRNAs in OC3-IV2 compared to OC3……………29 Figure 3. Selection of miRNAs that may target EZH2 mRNA……………………30 Figure 4. MiR-138-5p is generated from miR-138-2 in OC3 cell line……….…31 Figure 5. Correlation among miRNAs, EZH2 and invasion of OSCC cell lines……32 Figure 6. Overexpression of miR-200a-3p in OC3 cell lines reduces the expression of EZH2……………………………………………………………………………33 Figure 7. Effect of miR-200a-3p in OSCC cell lines on cell migration, invasion and the expressions of EZH2……………………...…….………………………………34 Figure 8. H3K27me3 histone marks are reduced at the proximity of miR-200a promoter region…………………...……………………………………………..…35 Figure 9. Candidate transcription factors that may regulate expression of miR-200a-3p in the highly invasive OSCC cells……………………...……...……37 Figure 10. ChIP analysis for candidate transcription factors………….……...……38 Figure 11. Cytokines induce the expression of miR-200a-3p in oral cancer cells…40 Figure 12. The expressions of miR-138-5p and EZH2 in OSCC cell lines………..41 Figure 13. The expressions of miR-138-5p and miR-200a-3p in OC3, C9, SCC and SAS cell lines……………………………………………………………….…42 Figure 14. Effect of overexpressing miR-200a-3p on the expressions of E-cadherin in OSCC cell lines…………………..…………………………………43 Figure 15. The expressions of candidate tumor promoting genes and tumor suppressor genes in OSCC cell lines………………………………………………44 Figure 16. The expressions of EMT markers in OSCC cell lines…………………45 Figure 17. Working model for the post-transcriptional regulation of EZH2 by miR-200a-3p…………………………………………………………….…………46 Table……………………………………………………………………………………47 Table 1. Primers sequences for miRNA RT-PCR…………………………………47 Table 2. Primers sequences for PCR and QPCR…………………………………48 Table 3. Primers sequences for ChIP analysis…………………………….………49 References………………………………………………………………………..……50

    References

    1. Warnakulasuriya, S., Global epidemiology of oral and oropharyngeal cancer. Oral Oncol, 2009. 45(4-5): p. 309-16.
    2. Omura, K., Current status of oral cancer treatment strategies: surgical treatments for oral squamous cell carcinoma. Int J Clin Oncol, 2014. 19(3): p. 423-30.
    3. Noguti, J., et al., Metastasis from oral cancer: an overview. Cancer Genomics Proteomics, 2012. 9(5): p. 329-35.
    4. Torre, L.A., et al., Global cancer statistics, 2012. CA Cancer J Clin, 2015. 65(2): p. 87-108.
    5. Chen, W., et al., Cancer statistics in China, 2015. CA Cancer J Clin, 2016. 66(2): p. 115-32.
    6. Siegel, R.L., K.D. Miller, and A. Jemal, Cancer statistics, 2016. CA Cancer J Clin, 2016. 66(1): p. 7-30.
    7. Ariyoshi, Y., et al., Epidemiological study of malignant tumors in the oral and maxillofacial region: survey of member institutions of the Japanese Society of Oral and Maxillofacial Surgeons, 2002. Int J Clin Oncol, 2008. 13(3): p. 220-8.
    8. Su, C.C., et al., Chronic exposure to heavy metals and risk of oral cancer in Taiwanese males. Oral Oncol, 2010. 46(8): p. 586-90.
    9. Guha, N., et al., Betel quid chewing and the risk of oral and oropharyngeal cancers: a meta-analysis with implications for cancer control. Int J Cancer, 2014. 135(6): p. 1433-43.
    10. Huang, C.C., et al., Life expectancy and expected years of life lost to oral cancer in Taiwan: a nation-wide analysis of 22,024 cases followed for 10 years. Oral Oncol, 2015. 51(4): p. 349-54.
    11. Chang, J.Y., J.M. Wright, and K.K. Svoboda, Signal transduction pathways involved in epithelial-mesenchymal transition in oral cancer compared with other cancers. Cells Tissues Organs, 2007. 185(1-3): p. 40-7.
    12. Kurahara, S., et al., Expression of MMPS, MT-MMP, and TIMPs in squamous cell carcinoma of the oral cavity: correlations with tumor invasion and metastasis. Head Neck, 1999. 21(7): p. 627-38.
    13. Foulkes, M., Oral cancer: risk factors, treatment and nursing care. Nurs Stand, 2013. 28(8): p. 49-57.
    14. Huang, S.H. and B. O'Sullivan, Oral cancer: Current role of radiotherapy and chemotherapy. Med Oral Patol Oral Cir Bucal, 2013. 18(2): p. e233-40.
    15. van Zijl, F., G. Krupitza, and W. Mikulits, Initial steps of metastasis: cell invasion and endothelial transmigration. Mutat Res, 2011. 728(1-2): p. 23-34.
    16. Chiang, A.C. and J. Massague, Molecular basis of metastasis. N Engl J Med, 2008. 359(26): p. 2814-23.
    17. Weiss, L., Metastatic inefficiency. Adv Cancer Res, 1990. 54: p. 159-211.
    18. Gupta, G.P. and J. Massague, Cancer metastasis: building a framework. Cell, 2006. 127(4): p. 679-95.
    19. Yang, M.H., et al., Direct regulation of TWIST by HIF-1alpha promotes metastasis. Nat Cell Biol, 2008. 10(3): p. 295-305.
    20. Thiery, J.P. and J.P. Sleeman, Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol, 2006. 7(2): p. 131-42.
    21. Krebs, A.M., et al., The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nat Cell Biol, 2017. 19(5): p. 518-529.
    22. Quail, D.F. and J.A. Joyce, Microenvironmental regulation of tumor progression and metastasis. Nat Med, 2013. 19(11): p. 1423-37.
    23. Nieto, M.A., Context-specific roles of EMT programmes in cancer cell dissemination. Nat Cell Biol, 2017. 19(5): p. 416-418.
    24. Labernadie, A., et al., A mechanically active heterotypic E-cadherin/N-cadherin adhesion enables fibroblasts to drive cancer cell invasion. Nat Cell Biol, 2017. 19(3): p. 224-237.
    25. Wang, Z., et al., Transcriptional and epigenetic regulation of human microRNAs. Cancer Lett, 2013. 331(1): p. 1-10.
    26. Li, Y., et al., The histone modifications governing TFF1 transcription mediated by estrogen receptor. J Biol Chem, 2011. 286(16): p. 13925-36.
    27. Conway, E., E. Healy, and A.P. Bracken, PRC2 mediated H3K27 methylations in cellular identity and cancer. Curr Opin Cell Biol, 2015. 37: p. 42-8.
    28. Barski, A., et al., Chromatin poises miRNA- and protein-coding genes for expression. Genome Res, 2009. 19(10): p. 1742-51.
    29. Yamaguchi, H. and M.C. Hung, Regulation and Role of EZH2 in Cancer. Cancer Res Treat, 2014. 46(3): p. 209-22.
    30. Kim, K.H. and C.W. Roberts, Targeting EZH2 in cancer. Nat Med, 2016. 22(2): p. 128-34.
    31. Collett, K., et al., Expression of enhancer of zeste homologue 2 is significantly associated with increased tumor cell proliferation and is a marker of aggressive breast cancer. Clin Cancer Res, 2006. 12(4): p. 1168-74.
    32. Nikoloski, G., et al., Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat Genet, 2010. 42(8): p. 665-7.
    33. Koh, C.M., et al., Myc enforces overexpression of EZH2 in early prostatic neoplasia via transcriptional and post-transcriptional mechanisms. Oncotarget, 2011. 2(9): p. 669-83.
    34. Bracken, A.P., et al., EZH2 is downstream of the pRB-E2F pathway, essential for proliferation and amplified in cancer. EMBO J, 2003. 22(20): p. 5323-35.
    35. Garipov, A., et al., NF-YA underlies EZH2 upregulation and is essential for proliferation of human epithelial ovarian cancer cells. Mol Cancer Res, 2013. 11(4): p. 360-9.
    36. Kunderfranco, P., et al., ETS transcription factors control transcription of EZH2 and epigenetic silencing of the tumor suppressor gene Nkx3.1 in prostate cancer. PLoS One, 2010. 5(5): p. e10547.
    37. Lin, Y.W., et al., Role of STAT3 and vitamin D receptor in EZH2-mediated invasion of human colorectal cancer. J Pathol, 2013. 230(3): p. 277-90.
    38. Richter, G.H., et al., EZH2 is a mediator of EWS/FLI1 driven tumor growth and metastasis blocking endothelial and neuro-ectodermal differentiation. Proc Natl Acad Sci U S A, 2009. 106(13): p. 5324-9.
    39. Volkel, P., et al., Diverse involvement of EZH2 in cancer epigenetics. Am J Transl Res, 2015. 7(2): p. 175-93.
    40. Kim, E., et al., Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells. Cancer Cell, 2013. 23(6): p. 839-52.
    41. Su, I.H., et al., Polycomb group protein ezh2 controls actin polymerization and cell signaling. Cell, 2005. 121(3): p. 425-36.
    42. Ameres, S.L. and P.D. Zamore, Diversifying microRNA sequence and function. Nat Rev Mol Cell Biol, 2013. 14(8): p. 475-88.
    43. Ambros, V., The functions of animal microRNAs. Nature, 2004. 431(7006): p. 350-5.
    44. Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004. 116(2): p. 281-97.
    45. Ha, M. and V.N. Kim, Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol, 2014. 15(8): p. 509-24.
    46. Bartel, D.P., MicroRNAs: target recognition and regulatory functions. Cell, 2009. 136(2): p. 215-33.
    47. Lee, Y., et al., MicroRNA maturation: stepwise processing and subcellular localization. EMBO J, 2002. 21(17): p. 4663-70.
    48. Ozsolak, F., et al., Chromatin structure analyses identify miRNA promoters. Genes Dev, 2008. 22(22): p. 3172-83.
    49. Di Leva, G. and C.M. Croce, Roles of small RNAs in tumor formation. Trends Mol Med, 2010. 16(6): p. 257-67.
    50. Mendell, J.T. and E.N. Olson, MicroRNAs in stress signaling and human disease. Cell, 2012. 148(6): p. 1172-87.
    51. Lin, S. and R.I. Gregory, MicroRNA biogenesis pathways in cancer. Nat Rev Cancer, 2015. 15(6): p. 321-33.
    52. Pereira, D.M., et al., Delivering the promise of miRNA cancer therapeutics. Drug Discov Today, 2013. 18(5-6): p. 282-9.
    53. Lu, J., et al., MicroRNA expression profiles classify human cancers. Nature, 2005. 435(7043): p. 834-8.
    54. Bouyssou, J.M., et al., Regulation of microRNAs in cancer metastasis. Biochim Biophys Acta, 2014. 1845(2): p. 255-65.
    55. Ma, L. and R.A. Weinberg, Micromanagers of malignancy: role of microRNAs in regulating metastasis. Trends Genet, 2008. 24(9): p. 448-56.
    56. Asangani, I.A., et al., MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene, 2008. 27(15): p. 2128-36.
    57. Christopher, A.F., et al., MicroRNA therapeutics: Discovering novel targets and developing specific therapy. Perspect Clin Res, 2016. 7(2): p. 68-74.
    58. Rupaimoole, R. and F.J. Slack, MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov, 2017. 16(3): p. 203-222.
    59. Feng, X., et al., MiR-200, a new star miRNA in human cancer. Cancer Lett, 2014. 344(2): p. 166-73.
    60. Ruiz, M.A., B. Feng, and S. Chakrabarti, Polycomb repressive complex 2 regulates MiR-200b in retinal endothelial cells: potential relevance in diabetic retinopathy. PLoS One, 2015. 10(4): p. e0123987.
    61. Lim, Y.Y., et al., Epigenetic modulation of the miR-200 family is associated with transition to a breast cancer stem-cell-like state. J Cell Sci, 2013. 126(Pt 10): p. 2256-66.
    62. Kolesnikoff, N., et al., Specificity protein 1 (Sp1) maintains basal epithelial expression of the miR-200 family: implications for epithelial-mesenchymal transition. J Biol Chem, 2014. 289(16): p. 11194-205.
    63. Kim, T., et al., p53 regulates epithelial-mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. J Exp Med, 2011. 208(5): p. 875-83.
    64. Korpal, M., et al., The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. J Biol Chem, 2008. 283(22): p. 14910-4.
    65. Park, S.M., et al., The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev, 2008. 22(7): p. 894-907.
    66. Becker, L.E., et al., The role of miR-200a in mammalian epithelial cell transformation. Carcinogenesis, 2015. 36(1): p. 2-12.
    67. Copeland, N.G., et al., Distribution of the mammalian Stat gene family in mouse chromosomes. Genomics, 1995. 29(1): p. 225-8.
    68. Meissl, K., et al., The good and the bad faces of STAT1 in solid tumours. Cytokine, 2017. 89: p. 12-20.
    69. Decker, T. and P. Kovarik, Serine phosphorylation of STATs. Oncogene, 2000. 19(21): p. 2628-37.
    70. Kohanbash, G. and H. Okada, MicroRNAs and STAT interplay. Semin Cancer Biol, 2012. 22(1): p. 70-5.
    71. Ramana, C.V., et al., Complex roles of Stat1 in regulating gene expression. Oncogene, 2000. 19(21): p. 2619-27.
    72. Liu, X.S., et al., ZBTB7A Suppresses Melanoma Metastasis by Transcriptionally Repressing MCAM. Mol Cancer Res, 2015. 13(8): p. 1206-17.
    73. Maeda, T., R.M. Hobbs, and P.P. Pandolfi, The transcription factor Pokemon: a new key player in cancer pathogenesis. Cancer Res, 2005. 65(19): p. 8575-8.
    74. Jeon, B.N., et al., Proto-oncogene FBI-1 (Pokemon/ZBTB7A) represses transcription of the tumor suppressor Rb gene via binding competition with Sp1 and recruitment of co-repressors. J Biol Chem, 2008. 283(48): p. 33199-210.
    75. Sartini, D., et al., Pokemon proto-oncogene in oral cancer: potential role in the early phase of tumorigenesis. Oral Dis, 2015. 21(4): p. 462-9.
    76. Choi, W.I., et al., Proto-oncogene FBI-1 represses transcription of p21CIP1 by inhibition of transcription activation by p53 and Sp1. J Biol Chem, 2009. 284(19): p. 12633-44.
    77. Maeda, T., et al., Role of the proto-oncogene Pokemon in cellular transformation and ARF repression. Nature, 2005. 433(7023): p. 278-85.
    78. Davies, J.M., et al., Novel BTB/POZ domain zinc-finger protein, LRF, is a potential target of the LAZ-3/BCL-6 oncogene. Oncogene, 1999. 18(2): p. 365-75.
    79. Kelly, K.F. and J.M. Daniel, POZ for effect--POZ-ZF transcription factors in cancer and development. Trends Cell Biol, 2006. 16(11): p. 578-87.
    80. Landskron, G., et al., Chronic inflammation and cytokines in the tumor microenvironment. J Immunol Res, 2014. 2014: p. 149185.
    81. Raman, D., et al., Role of chemokines in tumor growth. Cancer Lett, 2007. 256(2): p. 137-65.
    82. Xie, K., Interleukin-8 and human cancer biology. Cytokine Growth Factor Rev, 2001. 12(4): p. 375-91.
    83. Heidemann, J., et al., Angiogenic effects of interleukin 8 (CXCL8) in human intestinal microvascular endothelial cells are mediated by CXCR2. J Biol Chem, 2003. 278(10): p. 8508-15.
    84. Rollins, B.J., Chemokines. Blood, 1997. 90(3): p. 909-28.
    85. Huang, S., et al., Fully humanized neutralizing antibodies to interleukin-8 (ABX-IL8) inhibit angiogenesis, tumor growth, and metastasis of human melanoma. Am J Pathol, 2002. 161(1): p. 125-34.
    86. Xu, L. and I.J. Fidler, Interleukin 8: an autocrine growth factor for human ovarian cancer. Oncol Res, 2000. 12(2): p. 97-106.
    87. Bharti, R., G. Dey, and M. Mandal, Cancer development, chemoresistance, epithelial to mesenchymal transition and stem cells: A snapshot of IL-6 mediated involvement. Cancer Lett, 2016. 375(1): p. 51-61.
    88. Hodge, D.R., E.M. Hurt, and W.L. Farrar, The role of IL-6 and STAT3 in inflammation and cancer. Eur J Cancer, 2005. 41(16): p. 2502-12.
    89. Palena, C., D.H. Hamilton, and R.I. Fernando, Influence of IL-8 on the epithelial-mesenchymal transition and the tumor microenvironment. Future Oncol, 2012. 8(6): p. 713-22.
    90. Xiang, M., et al., STAT3 induction of miR-146b forms a feedback loop to inhibit the NF-kappaB to IL-6 signaling axis and STAT3-driven cancer phenotypes. Sci Signal, 2014. 7(310): p. ra11.
    91. Deng, B., et al., MicroRNA-142-3p inhibits cell proliferation and invasion of cervical cancer cells by targeting FZD7. Tumour Biol, 2015. 36(10): p. 8065-73.
    92. Zhang, J. and L. Ma, MicroRNA control of epithelial-mesenchymal transition and metastasis. Cancer Metastasis Rev, 2012. 31(3-4): p. 653-62.
    93. Rheinwald, J.G. and M.A. Beckett, Tumorigenic keratinocyte lines requiring anchorage and fibroblast support cultured from human squamous cell carcinomas. Cancer Res, 1981. 41(5): p. 1657-63.
    94. Kramer, M.F., Stem-loop RT-qPCR for miRNAs. Curr Protoc Mol Biol, 2011. Chapter 15: p. Unit 15 10.
    95. Chen, C., et al., Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res, 2005. 33(20): p. e179.
    96. Lee, T.I., S.E. Johnstone, and R.A. Young, Chromatin immunoprecipitation and microarray-based analysis of protein location. Nat Protoc, 2006. 1(2): p. 729-48.
    97. Dweep, H. and N. Gretz, miRWalk2.0: a comprehensive atlas of microRNA-target interactions. Nat Methods, 2015. 12(8): p. 697.
    98. Dweep, H., et al., miRWalk--database: prediction of possible miRNA binding sites by "walking" the genes of three genomes. J Biomed Inform, 2011. 44(5): p. 839-47.
    99. Kent, W.J., et al., The human genome browser at UCSC. Genome Res, 2002. 12(6): p. 996-1006.
    100. Tsunoda, T. and T. Takagi, Estimating transcription factor bindability on DNA. Bioinformatics, 1999. 15(7-8): p. 622-30.
    101. Sandelin, A., et al., JASPAR: an open-access database for eukaryotic transcription factor binding profiles. Nucleic Acids Res, 2004. 32(Database issue): p. D91-4.
    102. Han, T., et al., EZH2 promotes cell migration and invasion but not alters cell proliferation by suppressing E-cadherin, partly through association with MALAT-1 in pancreatic cancer. Oncotarget, 2016. 7(10): p. 11194-207.
    103. O'Donnell, R.K., et al., Gene expression signature predicts lymphatic metastasis in squamous cell carcinoma of the oral cavity. Oncogene, 2005. 24(7): p. 1244-51.
    104. Ghoshal, A., et al., MicroRNA target prediction using thermodynamic and sequence curves. BMC Genomics, 2015. 16: p. 999.
    105. Chang, T.H., et al., An enhanced computational platform for investigating the roles of regulatory RNA and for identifying functional RNA motifs. BMC Bioinformatics, 2013. 14 Suppl 2: p. S4.
    106. Jin, Y., et al., Role of microRNA-138 as a potential tumor suppressor in head and neck squamous cell carcinoma. Int Rev Cell Mol Biol, 2013. 303: p. 357-85.
    107. Tserel, L., et al., Genome-wide promoter analysis of histone modifications in human monocyte-derived antigen presenting cells. BMC Genomics, 2010. 11: p. 642.
    108. Sabbah, M., et al., Molecular signature and therapeutic perspective of the epithelial-to-mesenchymal transitions in epithelial cancers. Drug Resist Updat, 2008. 11(4-5): p. 123-51.
    109. Zhang, Y., et al., Potential mechanism of interleukin-8 production from lung cancer cells: an involvement of EGF-EGFR-PI3K-Akt-Erk pathway. J Cell Physiol, 2012. 227(1): p. 35-43.
    110. Liu, X., et al., MicroRNA-138 suppresses invasion and promotes apoptosis in head and neck squamous cell carcinoma cell lines. Cancer Lett, 2009. 286(2): p. 217-22.
    111. Wang, C., et al., Polycomb group protein EZH2-mediated E-cadherin repression promotes metastasis of oral tongue squamous cell carcinoma. Mol Carcinog, 2013. 52(3): p. 229-36.
    112. Cao, Q., et al., Repression of E-cadherin by the polycomb group protein EZH2 in cancer. Oncogene, 2008. 27(58): p. 7274-84.
    113. Ackermann, S., et al., FOXP1 inhibits cell growth and attenuates tumorigenicity of neuroblastoma. BMC Cancer, 2014. 14: p. 840.
    114. Ahronian, L.G., et al., A novel KLF6-Rho GTPase axis regulates hepatocellular carcinoma cell migration and dissemination. Oncogene, 2016. 35(35): p. 4653-62.
    115. Hill, L., G. Browne, and E. Tulchinsky, ZEB/miR-200 feedback loop: at the crossroads of signal transduction in cancer. Int J Cancer, 2013. 132(4): p. 745-54.
    116. Bracken, C.P., Y. Khew-Goodall, and G.J. Goodall, Network-Based Approaches to Understand the Roles of miR-200 and Other microRNAs in Cancer. Cancer Res, 2015. 75(13): p. 2594-9.
    117. Assi, M., et al., Regulation of type I-interferon responses in the human epidermal melanocyte cell line SKMEL infected by the Ross River alphavirus. Cytokine, 2015. 76(2): p. 572-6.
    118. Chu, U.B., et al., Endothelial protective genes induced by statin are mimicked by ERK5 activation as triggered by a drug combination of FTI-277 and GGTI-298. Biochim Biophys Acta, 2015. 1850(7): p. 1415-25.

    QR CODE