研究生: |
鄭昭勝 Chao-Sheng Cheng |
---|---|
論文名稱: |
植物非特異性脂質傳送蛋白之結構及功能分析與應用 Structure, Function and Application of Plant Nonspecific Lipid Transfer Protein |
指導教授: |
呂平江
Ping-Chiang Lyu |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生命科學系 Department of Life Sciences |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 124 |
中文關鍵詞: | 植物非專一性脂質運輸蛋白 、疏水性空洞 、蛋白質穩定度 、比較模擬法 、嵌合 、演化樹 、植物抗菌 、化學位移分布 、氫/氘交換 、藥物運輸 、快速篩選法 |
外文關鍵詞: | Plant non-specific lipid transfer proteins, Hydrophobic cavity, Protein stability, Comparative modeling, Docking, Phylogenetic tree, Plant defense, Chemical shift perturbations, H/D exchange, Drug carrier, High throughput screening method |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
植物非專一性脂質運輸蛋白(nsLTPs)是一種小分子量的鹼性蛋白,其結構是以α-螺旋為主體的結構。依照分子量的不同此一蛋白可分為兩大類,即nsLTP1 (9k Da)和nsLTP2 (7k Da)。相對於nsLTP1,只有稻米和小麥的nsLTP2結構被解出來。因此,為了更加了解nsLTP2的特性,我們利用同源性建模方法和分子嵌合技術來研究nsLTP2的結構、生物物理和生物化學特性。除此之外,植物非專一性脂質運輸蛋白在植物的防禦機制上似乎扮演重要的角色,儘管真正的抗菌機制還不是很清楚。我們在此提出此一蛋白藉由與固醇類分子的結合以促進抗菌的反應發生。為了研究此課題,我們利用了螢光光譜、原二色光譜儀、質譜儀和核磁共振儀來進行研究。同時,我們也利用分子生物學的點突變技術來加以闡明疏水性胺基酸對於此蛋白結構和與固醇類分子結合的影響。最後,由於植物非專一性脂質運輸蛋白具有與不同受質的結合能力以及高穩定度的結構特性,因此此蛋白有潛力成為藥物傳送的載體。我們利用了電腦助藥物篩選的技術來進行篩選,試找出可能與此一蛋白結合的藥物,並結合螢光光譜的方法加以驗證。如此,可進一步提高此一蛋白質的附加價值。
Plant nonspecific lipid transfer proteins (nsLTPs) are small basic proteins which are characterized by their ability to transfer lipids between membranes in vitro. Based on the molecular weight, nsLTPs are classified into two subfamilies, nsLTP1 (9 kDa) and nsLTP2 (7 kDa). In contrast with nsLTP1, only rice and wheat nsLTP2 structures have been determined in this subfamily. In order to realize nsLTP2s, comparative modeling and molecular docking were used to study their structural, biophysical and biochemical properties. Besides, nsLTPs seem to play an important role in plant defense although the exact mechanism for antimicrobial effects is still unclear. We purpose that nsLTPs may associate with a sterol molecule to trigger the plant defense. This hypothesis was verified by using various spectroscopic techniques like fluorescence, circular dichroism, mass spectrometry and NMR. We also used site-directed mutagenesis to investigate the influence of hydrophobic residues on sterol binding and protein stability. Finally, the wide binding properties allow nsLTPs to be a potential drug carrier. Therefore, we used a computer-based high throughput screening (HTS) method to screen drug library to identify the possible binding drugs, thus increasing the added value for nsLTPs in drug delivery systems.
1.Kader, J. C. (1975). Proteins and the intracellular exchange of lipids: stimulation of phospholipid exchange between mitochondria and microsomal fractions by proteins isolate from potato tuber. Biochim Biophys Acta 380, 31-44
2.Jegou, S., Douliez, J. P., Molle, D., Boivin, P., and Marion, D. (2000). Purification and structural characterization of LTP1 polypeptides from beer. J Agric Food Chem 48, 5023-5029
3.Lee, J. Y., Min, K., Cha, H., Shin, D. H., Hwang, K. Y., and Suh, S. W. (1998). Rice nonspecific lipid transfer protein: the 1.6 Å crystal structure in the unliganded state reveals a small hydrophobic cavity. J Mol Biol 276, 437-448
4.Douliez, J. P., Jegou, S., Pato, C., Larre, C., Molle, D., and Marion, D. (2001). Identification of a new form of lipid transfer protein (LTP1) in wheat seeds. J Agric Food Chem 49, 1805-1808
5.Shin, D. H., Lee, J. Y., Hwang, K. Y., Kim, K. K., and Suh, S. W. (1995). High-resolution crystal structure of the nonspecific lipid transfer protein from maize seedlings. Structure 3, 189-199
6.Horvath, B. M., Bachem, C. W., Trindade, L. M., Oortwijn, M. E., and Visser, R. G. (2002). Expression analysis of a family of nsLTP genes tissue specifically expressed throughout the plant and during potato tuber life cycle. Plant Physiol 129, 1494-1506
7.Douliez, J. P., Michon, T., Elmorjani, K., and Marion, D. (2000). Structure, biological and technological functions of lipid transfer proteins and indolines, the major lipid binding proteins from cereal kernels. J Cereal Sci 32, 1-20
8.Kader, J. C. (1996). Lipid transfer proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 47, 627-654
9.Dubreil, L., Gabrorit, T., Bouchet, B., Galent, D. J., Broekaert,. (1998). Spatial and temporal distribution of the major isoforms of puroindolines (puroindoline-a and puroindoline-b) and nonspecific lipid transfer protein (nsLTP1) of Triticum aestivum seeds. Relationships with their in vitro antifungal properties. Plant Sci 138, 121-135
10.Kader, J. C. (1997). Lipid transfer proteins: a puzzling family of plant proteins. Trends in Plant Science 2, 66-70
11.Douliez, J. P., Michon, T., and Marion, D. (2000). Steady-state tyrosine fluorescence to study the lipid-binding properties of a wheat nonspecific lipid transfer protein (nsLTP1). Biochim Biophys Acta 1467, 65-72
12.Garcia-Olmedo, F., Molina, A., Segura, A., and Moreno, M. (1995). The defensive role of nonspecific lipid transfer proteins in plants. Trends Microbiol 3, 72-74
13.Pastorello, E. A., Pompei, C., Pravettoni, V., Brenna, O., Farioli, L., Trambaioli, C., and Conti, A. (2001). Lipid transfer proteins and 2S albumins as allergens. Allergy 56, 45-47
14.Lehmann, M. S., Pebay-Peyroula, E., Cohen-Addad, C., and Odani, S. (1989). Crystallographic data for soybean hydrophobic protein. J Mol Biol 210, 235-236
15.Han, G. W., Lee, J. Y., Song, H. K., Chang, C., Min, K., Moon, J., Shin, D. H., Kopka, M. L., Sawaya, M. R., Yuan, H. S., Kim, T. D., Choe, J., Lim, D., Moon, H. J., and Suh, S. W. (2001). Structural basis of nonspecific lipid binding in maize lipid transfer protein complexes revealed by high-resolution X-ray crystallography. J Mol Biol Vol. 308, 263-278
16.Samuel, D., Liu, Y. J., Cheng, C. S., and Lyu, P. C. (2002). Solution structure of plant nonspecific lipid transfer protein-2 from rice (Oryza sativa). J Biol Chem 277, 35267-35273
17.Pons, J. L., de Lamotte, F., Gautier, M. F., and Delsuc, M. A. (2003). Refined solution structure of a liganded type 2 wheat nonspecific lipid transfer protein. J Biol Chem 278, 14249-14256
18.Lerche, M. H., Kragelund, B. B., Bech, L. M., and Poulsen, F. M. (1997). Barley lipid transfer protein complexed with palmitoyl CoA: the structure reveals a hydrophobic binding site that can expand to fit both large and small lipid-like ligands. Structure 5, 291-306
19.Lindorff-Larsen, K., and Winther, J. R. (2001). Surprisingly high stability of barley lipid transfer protein, LTP1, towards denaturant, heat and proteases. FEBS Lett 488, 145-148
20.Pato, C., Le Borgne, M., Le Baut, G., Le Pape, P., Marion, D., and Douliez, J. P. (2001). Potential application of plant lipid transfer proteins for drug delivery. Biochem Pharmacol 62, 555-560
21.Liu, H., Xue, L., Li, C., Zhang, R., and Ling, Q. (2001). Calmodulin-binding protein BP-10, a probable new member of plant nonspecific lipid transfer protein superfamily. Biochem Biophys Res Commun 285, 633-638
22.Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673-4680
23.Shindyalov, I. N., and Bourne, P. E. (1998). Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Eng 11, 739-747
24.Lim, A., and Zhang, L. (1999). WebPHYLIP: a web interface to PHYLIP. Bioinformatics 15, 1068-1069
25.Marti-Renom, M. A., Stuart, A. C., Fiser, A., Sanchez, R., Melo, F., and Sali, A. (2000). Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 29, 291-325
26.Sali, A., and Blundell, T. L. (1993). Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234, 779-815
27.Fiser, A., Do, R. K., and Sali, A. (2000). Modeling of loops in protein structures. Protein Sci 9, 1753-1773
28.Khurana, S., Sanli, G., Powers, D. B., Anderson, S., and Blaber, M. (2000). Molecular modeling of substrate binding in wild-type and mutant Corynebacteria 2,5-diketo-D-gluconate reductases. Proteins 39, 68-75
29.Laskowski, R. A., MacArthur, M. W., Moss, D. S., and Thornton, J. M. (1993). PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst 26, 283-291
30.Morris, A. L., MacArthur, M. W., Hutchinson, E. G., and Thornton, J. M. (1992). Stereochemical quality of protein structure coordinates. Proteins 12, 345-364
31.Kleywegt, G. J., and Jones, T. A. (1994). Detection, delineation, measurement and display of cavities in macromolecular structures. Acta Cryst D50, 178-185
32.Guex, N., and Peitsch, M. C. (1997). SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis 18, 2714-2723
33.Jean-Charles, A., Nicholls, A., Sharp, K., Honig, B., Tempczyk, A., Hendrickson, T. H., and Clark, W. (1991). Electrostatic Contributions to Solvation Energies: Comparisons of Free Energy Perturbation and Continuum Calculations. J Am Chem Soc 113, 1454-1454
34.Vakser, I. A., and Aflalo, C. (1994). Hydrophobic docking: a proposed enhancement to molecular recognition techniques. Proteins 20, 320-329
35.Vakser, I. A., Matar, O. G., and Lam, C. F. (1999). A systematic study of low-resolution recognition in protein-protein complexes. Proc Natl Acad Sci U S A 96, 8477-8482
36.Katchalski-Katzir, E., Shariv, I., Eisenstein, M., Friesem, A. A., Aflalo, C., and Vakser, I. A. (1992). Molecular surface recognition: Determination of geometric fit between proteins and their ligands by correlation techniques. Proc Natl Acad Sci U S A 89, 2195-2199
37.Wallace, A. C., Laskowski, R. A., and Thornton, J. M. (1995). LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8, 127-134
38.Todd J. A., and Ewing, I. D. K. (1997). Critical Evaluation of Search Algorithms for Automated Molecular Docking and Database Screening J Comput Chem 18, 1175-1189
39.Liu, Y. J., Samuel, D., Lin, C. H., and Lyu, P. C. (2002). Purification and characterization of a novel 7-kDa nonspecific lipid transfer protein-2 from rice (Oryza sativa). Biochem Biophys Res Commun 294, 535-540
40.Yu, Y. G., Chung, C. H., Fowler, A., and Suh, S. W. (1988). Amino acid sequence of a probable amylase/protease inhibitor from rice seeds. Arch Biochem Biophys 265, 466-475
41.Zhou, H. X., Lyu, P., Wemmer, D. E., and Kallenbach, N. R. (1994). Alpha helix capping in synthetic model peptides by reciprocal side chain-main chain interactions: Evidence for an N terminal "capping box". Proteins 18, 1-7
42.Lascombe, M. B., Ponchet, M., Venard, P., Milat, M. L., Blein, J. P., and Prange, T. (2002). The 1.45 Å resolution structure of the cryptogein- cholesterol complex: a close-up view of a sterol carrier protein (SCP) active site. Acta Crystallogr Biol Crystallogr D58, 1442-1447
43.Lascombe, M. B., Milat, M. L., Blein, J. P., Panabieres, F., Ponchet, M., and Prange, T. (2000). Crystallization and preliminary X-ray studies of oligandrin, a sterol-carrier elicitor from Pythium oligandrum. Acta Crystallogr Biol Crystallogr D56, 1498-1500
44.Goddard, T. D., and Kneller, D. G. (1999). SPARKY 3. University of California, San Francisco, CA, USA.
45.Sachchidanand, Lequin, O., Staunton, D., Mulloy, B., Forster, M. J., Yoshida, K., and Campbell, I. D. (2002). Mapping the Heparin-binding Site on the 13-14F3 Fragment of Fibronectin. J Biol Chem 277, 50629-50635
46.Crowley, P. B., Diaz-Quintana, A., Molina-Heredia, F. P., Nieto, P., Sutter, M., Haehnel, W., De La Rosa, M. A., and Ubbink, M. (2002). The Interactions of Cyanobacterial Cytochrome c6 and Cytochrome f, Characterized by NMR. J Biol Chem 277, 48685-48689
47.Smutzer, G., Crawford, B. F., and Yeagle, P. L. (1986). Physical properties of the fluorescent sterol probe dehydroergosterol. Biochim Biophys Acta 862, 361-371
48.Mikes, V., Milat, M. L., Ponchet, M., Panabieres, F., Ricci, P., and Blein, J. P. (1998). Elicitins, proteinaceaous elicitors of plant defence, are a new class of sterol carrier proteins. Biochem Biophys Res Commun 245, 133-139
49.Guerbette, F., Grosbois, M., Jolliot-Croquin, A., Kader, J. C., and Zachowski, A. (1999). Comparison of lipid binding and transfer properties of two lipid transfer proteins from plants. Biochemistry 38, 14131-14137
50.Demmers, J. A., Haverkamp, J., Heck, A. J., Koeppe, R. E., 2nd, and Killian, J. A. (2000). Electrospray ionization mass spectrometry as a tool to analyze hydrogen/deuterium exchange kinetics of transmembrane peptides in lipid bilayers. Proc Natl Acad Sci U S A 97, 3189-3194
51.Demmers, J. A., van Duijn, E., Haverkamp, J., Greathouse, D. V., Koeppe, R. E., 2nd, Heck, A. J., and Killian, J. A. (2001). Interfacial Positioning and Stability of Transmembrane Peptides in Lipid Bilayers Studied by Combining Hydrogen/Deuterium Exchange and Mass Spectrometry. J Biol Chem 276, 34501-34508
52.Dubreil, L., Compoint, J. P., and Marion, D. (1997). Interaction of puroindolines with wheat flour polar lipids determines their foaming properties. J Agric Food Chem 45, 108-116
53.Dutt, M. J., and Lee, K. H. (2000). Proteomic analysis. Curr Opin Biotechnol 11, 176-179
54.Sanchez, R., and Sali, A. (1998). Large-scale protein structure modeling of the Saccharomyces cerevisiae genome. Proc Natl Acad Sci U S A 95, 13597-13602
55.Hilbert, M., Bohm, G., and Jaenicke, R. (1993). Structural relationships of homologous proteins as a fundamental principle in homology modeling. Proteins 17, 138-151
56.Sander, C., and Schneider, R. (1991). Database of homology-derived protein structures and the structural meaning of sequence alignment. Proteins 9, 56-68
57.Sanchez, R., and Sali, A. (1997). Advances in comparative protein-structure modelling. Curr Opin Struct Biol 7, 206-214
58.Sanchez, R., Pieper, U., Mirkovic, N., de Bakker, P. I., Wittenstein, E., and Sali, A. (2000). MODBASE, a database of annotated comparative protein structure models. Nucleic Acids Res 28, 250-253
59.Douliez, J. P., Pato, C., Rabesona, H., Molle, D., and Marion, D. (2001). Disulfide bond assignment, lipid transfer activity and secondary structure of a 7-kDa plant lipid transfer protein, LTP2. Eur J Biochem 268, 1400-1403
60.De Samblanx, G. W., Goderis, I. J., Thevissen, K., Raemaekers, R., Fant, F., Borremans, F., Acland, D. P., Osborn, R. W., Patel, S., and Broekaert, W. F. (1997). Mutational analysis of a plant defensin from radish (Raphanus sativus L.) reveals two adjacent sites important for antifungal activity. J Biol Chem 272, 1171-1179
61.McManus, A. M., Nielsen, K. J., Marcus, J. P., Harrison, S. J., Green, J. L., Manners, J. M., and Craik, D. J. (1999). MiAMP1, a novel protein from Macadamia integrifolia adopts a Greek key beta-barrel fold unique amongst plant antimicrobial proteins. J Mol Biol 293, 629-638
62.Bernhard, W. R., and Somerville, C. R. (1989). Coidentity of putative amylase inhibitors from barley and finger millet with phospholipid transfer proteins inferred from amino acid sequence homology. Arch Biochem Biophys 269, 695-697
63.Cammue, B. P., Thevissen, K., Hendriks, M., Eggermont, K., Goderis, I. J., Proost, P., Van Damme, J., Osborn, R. W., Guerbette, F., Kader, J. C., and et al. (1995). A potent antimicrobial protein from onion seeds showing sequence homology to plant lipid transfer proteins. Plant Physiol 109, 445-455
64.Molina, A., Diaz, I., Vasil, I. K., Carbonero, P., and Garcia-Olmedo, F. (1996). Two cold-inducible genes encoding lipid transfer protein LTP4 from barley show differential responses to bacterial pathogens. Mol Gen Genet 252, 162-168
65.Pyee, J., Yu, H., and Kolattukudy, P. E. (1994). Identification of a lipid transfer protein as the major protein in the surface wax of broccoli (Brassica oleracea) leaves. Arch Biochem Biophys 311, 460-468
66.Pastorello, E. A., Farioli, L., Pravettoni, V., Giuffrida, M. G., Ortolani, C., Fortunato, D., Trambaioli, C., Scibola, E., Calamari, A. M., Robino, A. M., and Conti, A. (2001). Characterization of the major allergen of plum as a lipid transfer protein. J Chromatogr B Biomed Sci Appl 756, 95-103
67.Baud, F., Pebay-Peyroula, E., Cohen-Addad, C., Odani, S., and Lehmann, M. S. (1993). Crystal structure of hydrophobic protein from soybean; a member of a new cysteine-rich family. J Mol Biol 231, 877-887
68.He, C. Y., Zhang, J. S., and Chen, S. Y. (2002). A soybean gene encoding a proline-rich protein is regulated by salicylic acid, an endogenous circadian rhythm and by various stresses. Theor Appl Genet 104, 1125-1131
69.Walther, D. (1997). WebMol - a Java-based PDB viewer. Trends Biochem Sci 22, 274-275
70.Tassin, S., Broekaert, W. F., Marion, D., Acland, D. P., Ptak, M., Vovelle, F., and Sodano, P. (1998). Solution structure of Ace-AMP1, a potent antimicrobial protein extracted from onion seeds. Structural analogies with plant nonspecific lipid transfer proteins. Biochemistry 37, 3623-3637
71.Selitrennikoff, C. P. (2001). Antifungal Proteins. Appl Environ Microbiol 67, 2883-2894
72.Ponchet, M., Panabieres, F., Milat, M. L., Mikes, V., Montillet, J. L., Suty, L., Triantaphylides, C., Tirilly, Y., and Blein, J. P. (1999). Are elicitins cryptograms in plant-Oomycete communications?. Cell Mol Life Sci 56, 1020-1047
73.Mikes, V., Milat, M. L., Ponchet, M., Ricci, P., and Blein, J. P. (1997). The fungal elicitor cryptogein is a sterol carrier protein. FEBS Lett 416, 190-192
74.Hartmann, M. A. (1998). Plant sterols and the membrane environment. Trends Plant Sci 3, 170-175
75.Blein, J. P., Coutos-Thevenot, P., Marion, D., and Ponchet, M. (2002). From elicitins to lipid transfer proteins: a new insight in cell signalling involved in plant defence mechanisms. Trends Plant Sci 7, 293-296
76.Boissy, G., O'Donohue, M., Gaudemer, O., Perez, V., Pernollet, J. C., and Brunie, S. (1999). The 2.1 Å structure of an elicitin-ergosterol complex: a recent addition to the Sterol Carrier Protein family. Protein Sci 8, 1191-1199
77.Buhot, N., Douliez, J. P., Jacquemard, A., Marion, D., Tran, V., Maume, B. F., Milat, M. L., Ponchet, M., Mikes, V., Kader, J. C., and Blein, J. P. (2001). A lipid transfer protein binds to a receptor involved in the control of plant defence responses. FEBS Lett 509, 27-30
78.Maldonado, A. M., Doerner, P., Dixon, R. A., Lamb, C. J., and Cameron, R. K. (2002). A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis. Nature 419, 399-403
79.Gomes, E., Sagot, E., Gaillard, C., Laquitaine, L., Poinssot, B., Sanejouand, Y. H., Delrot, S., and Coutos-Thevenot, P. (2003). Nonspecific lipid transfer protein genes expression in grape (Vitis sp.) cells in response to fungal elicitor treatments. Mol Plant Microbe Interact 16, 456-464
80.Feng, J., Wehbi, H., and Roberts, M. F. (2002). Role of Tryptophan Residues in Interfacial Binding of Phosphatidylinositol-specific Phospholipase C. J Biol Chem 277, 19867-19875
81.Zachowski, A., Guerbette, F., Grosbois, M., Jolliot-Croquin, A., and Kader, J. C. (1998). Characterisation of acyl binding by a plant lipid-transfer protein. Eur J Biochem 257, 443-448
82.Kamal, J. K., and Behere, D. V. (2002). Thermal and conformational stability of seed coat soybean peroxidase. Biochemistry 41, 9034-9042
83.Greene, R. F., Jr., and Pace, C. N. (1974). Urea and Guanidine Hydrochloride Denaturation of Ribonuclease, Lysozyme, a-Chymotrypsin, and b- Lactoglobulin. J Biol Chem 249, 5388-5393
84.Santoro, M. M., and Bolen, D. W. (1988). Unfolding free energy changes determined by the linear extrapolation method. 1. Unfolding of phenylmethanesulfonyl alpha-chymotrypsin using different denaturants. Biochemistry 27, 8063-8068
85.Englander, S. W., Sosnick, T. R., Englander, J. J., and Mayne, L. (1996). Mechanisms and uses of hydrogen exchange. Curr Opin Struct Biol 6, 18-23
86.Nemirovskiy, O., Giblin, D. E., and Gross, M. L. (1999). Electrospray ionization mass spectrometry and hydrogen/deuterium exchange for probing the interaction of calmodulin with calcium. J Am Soc Mass Spectrom 10, 711-718
87.Wuthrich, K. (1986), Nmr of Proteins andNucleic Acids. J. Wiley & Sons, New York.
88.Kraulis P. J. (1991). MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J Appl Cryst 24, 946-950
89.Osman, H., Vauthrin, S., Mikes, V., Milat, M. L., Panabieres, F., Marais, A., Brunie, S., Maume, B., Ponchet, M., and Blein, J. P. (2001). Mediation of Elicitin Activity on Tobacco Is Assumed by Elicitin-Sterol Complexes. Mol Biol Cell 12, 2825-2834
90.Rueckert, D. G.., and Schmidt, K. (1990). Lipid transfer proteins. Chem. Phys. Lipids 56, 1-20
91.Cheng, C. S., Samuel, D., Liu, Y. J., Shyu, J. C., Lai, S. M., Lin, K. F., and Lyu, P. C. (2004). Binding mechanism of nonspecific lipid transfer proteins and their role in plant defense. Biochemistry 43, 13628-13636
92.Schroeder, F., Butko, P., Nemecz, G., and Scallen, T. J. (1990). Interaction of fluorescent delta 5,7,9 (11),22-ergostatetraen-3 beta-ol with sterol carrier protein-2. J Biol Chem 265, 151-157
93.de Wolf, F. A., and Brett, G. M. (2000). Ligand-binding proteins: their potential for application in systems for controlled delivery and uptake of ligands. Pharmacol Rev 52, 207-236
94.Dorkoosh, F. A., Verhoef, J. C., Borchard, G., Rafiee-Tehrani, M., and Junginger, H. E. (2001). Development and characterization of a novel peroral peptide drug delivery system. J Control Release 71, 307-318
95.Davis, B. G., and Robinson, M. A. (2002). Drug delivery systems based on sugar-macromolecule conjugates. Curr Opin Drug Discov Devel 5, 279-288
96.Bhattacharya, A., and Mukherjee, A. (1999). Development of a Protein-based model microparticle drug delivery system. Indian J Pharm Sci 61, 389-391
97.de Harven, E., Fradet, Y., Connolly, J. G., Hanna, W., He, S., Wang, Y., Choi, B. C., McGroarty, R., Bootsma, G., Tilups, A., and et al. (1992). Antibody drug carrier for immunotherapy of superficial bladder cancer: ultrastructural studies. Cancer Res 52, 3131-3137
98.Felix, K. (2002). Drug conjugates with albumin and transferrin. Exp Opin Ther Patents 12, 433-439
99.Shoichet, B. K., Bodian, D. L., and Kuntz, I. D. (1992). Molecular docking using shape descriptors. J Comp Chem 13, 380-397
100.Berges, R. R., Windeler, J., Trampisch, H. J., and Senge, T. (1995). Randomised, placebo-controlled, double-blind clinical trial of beta-sitosterol in patients with benign prostatic hyperplasia. Beta-sitosterol Study Group. Lancet 345, 1529-1532
101.Ravenna, L., Di Silverio, F., Russo, M. A., Salvatori, L., Morgante, E., Morrone, S., Cardillo, M. R., Russo, A., Frati, L., Gulino, A., and Petrangeli, E. (1996). Effects of the lipidosterolic extract of Serenoa repens (Permixon) on human prostatic cell lines. Prostate 29, 219-230
102.Liao, L. L., Horwitz, S. B., Huang, M. T., Grollman, A. P., Steward, D., and Martin, J. (1975). Triphenylmethane dyes as inhibitors of reverse transcriptase, RNA polymerase, and protein synthesis: Structure activity relationships. J Med Chem 18, 117-120
103.Wulff, H., Miller, M. J., Hansel, W., Grissmer, S., Cahalan, M. D., and Chandy, K. G. (2000). Design of a potent and selective inhibitor of the intermediate-conductance Ca2+-activated K+ channel, IKCa1: a potential immunosuppressant. Proc Natl Acad Sci U S A 97, 8151-8156
104.Kyte, J., and Doolittle, R. F. (1982). A simple method for displaying the hydropathic character of a protein. J Mol Biol 157, 105-132
105.Powl, A. M., East, J. M., and Lee, A. G. (2003). Lipid-protein interactions studied by introduction of a tryptophan residue: the mechanosensitive channel MscL. Biochemistry 42, 14306-14317