簡易檢索 / 詳目顯示

研究生: 蔡鋒樺
Tsai, Feng-Hua
論文名稱: 利用高功率皮秒摻鐿光纖放大器產生二階諧波之研究
Second Harmonic Generation of the High-Power Picosecond Ytterbium-Doped Fiber Amplifier
指導教授: 潘犀靈
Pan, Ci-Ling
口試委員: 王啟倫
Wang, Chi-Luen
黃衍介
Huang, Yen-Chieh
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 90
中文關鍵詞: 摻鐿光纖光纖雷射超快脈衝二倍頻產生
外文關鍵詞: Ytterbium-Doped fiber, Fiver laser, Ultra-fast pulses, Second harmonic generation
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,我們利用類型一臨界相位匹配三硼酸鋰,以高功率皮秒摻鐿光纖放大器做為基頻光產生二階諧波。根據Boyd–Kleinman理論對於聚焦高斯光束產生二倍頻的計算,我們得出最佳聚焦參數為2.8~2.9。然而不同的非線性晶體有不同的走離角,最佳聚焦參數會因此有所改變。類型一臨界相位匹配三硼酸鋰的走離角為0.4°,相對的最佳參數則變為1.8~1.9。我們根據此參數,選擇125 mm聚焦透鏡產生最有效率的二倍頻轉換。做為基頻光源的光纖放大器最高輸出功率為50瓦,光譜頻寬為4.8奈米。光纖放大器輸出為橢圓偏振,我們利用極化分光鏡,從40瓦的基頻光擷取出18.8瓦線性偏振光,並產生2.3瓦的綠光,轉換效率為12.2%。在高功率工作狀態,光纖放大器由於自我相位調制效應,光譜頻寬從1奈米擴大至4.8奈米。因此,二階諧波轉換效率於高功率範圍呈現飽和趨勢。根據Boyd–Kleinman理論計算高斯光束聚焦後的倍頻轉換效率,理論也與實驗結果相符。最後,我們利用四分之一波片調整基頻光的偏振態,在入射基頻光為50瓦的情形下得到5.5瓦的綠光。


    In this thesis, by using type-I critical phase matching in Lithium Triborate (LBO), we demonstrate second harmonic generation of a high-power picosecond ytterbium-doped fiber laser system. Using the classical Boyd–Kleinman theory, we determined the optimal focal parameter to be 2.8 ~ 2.9 for second harmonic generation in focused beam case. However, the optimal focal parameter varies in different nonlinear crystals due to the walk-off effect. Type-I critical phase matching in Lithium Triborate has optimal focal parameter of 1.8 ~ 1.9. The corresponding walk-off angle is 0.4°. We get most efficient second harmonic generation by using lens of which the focal length was 125 mm. The maximum output power of our fiber laser system is 50 W, with a spectral bandwidth of 4.8 nm. Its polarization state is elliptical. With 18.8 W of linearly polarized incident light, we can generate 2.3 W of green light (λ=532 nm) with efficiency of 12.2 %. Due to self-phase modulation, the spectrum bandwidth broadens from 1 nm to 4.8 nm after fiber amplification. The conversion efficiency saturates in the high power region. The experimental data are in good agreement with simulation results using Boyd-Kleinman theory. By optimizing polarization state of the fundamental light at 50 W, we generate 5.5 W of the green output.

    Abstract I 摘要 II 致謝 III List of Figures VI List of Tables IX Chapter 1 Introduction 1 Chapter 2 Theory 4 2.1 Master oscillator fiber amplifier 4 2.1.1 Ultrafast Mode-Locked Laser 6 2.1.2 Doped Fiber Amplifier 8 2.2 Nonlinear Optics 9 2.2.1 Second Harmonics Generation 13 2.2.2 Nonlinear Crystal 17 2.2.3 Phase Matching 32 Chapter 3 Experimental Methods 38 3.1 Scheme of dual-stage MOPA system 38 3.1.1 Diode-pumped solid-state laser 40 3.1.2 First stage amplifier 43 3.1.3 Second stage amplifier 45 3.2 Frequency doubling 47 3.2.1 Crystal choice 47 3.2.2 Calculation of conversion efficiency 51 Chapter 4 Optimizing the focusing condition 56 4.1 Single-lens configuration 56 4.2 Dual-lens configuration 60 4.3 Comparison with the theory for SHG by the focused beam 67 Chapter 5 Result and Discussion 69 5.1 Preliminary result of frequency doubling 69 5.2 The polarization state at output of amplifier 72 5.3 Frequency doubling with linear polarized power 75 5.4 Frequency doubling with LBO crystal 79 Chapter 6 Conclusion 82 Reference 84 Chapter 7 Appendix 88

    1. M. Lenzner, J. Krüger, W.Kautek, F. Krausz, Wien, Austria, “Precision laser ablation of dielectrics in the 10-fs regime,” Appl. Phys. A, vol. 68, no. 3, pp. 369–371, Jan. 5, 1999.
    2. P. P. Pronko, S. K. Dutta, J. Squier, J. V. Rudd, D. Du, and G. Mourou, “Machining of sub-micron holes using a femtosecond laser at 800 nm,” Opt. Commun., vol. 114, issue 1-2, pp. 106-110, Jan. 15, 1995.
    3. J. Theime, “Fiber laser new challenges for the materials processing,” Laser Technik Journal, no. 3, pp. 58-60, Jun. 2007.
    4. F. Stutzki, F. Jansen, T. Eidam, A. Steinmetz, C. Jauregui, J. Limpert, A. Tunnermann, “High average power large-pitch fiber amplifier with robust single-mode operation,” Optics Letters, vol. 36, no. 5, pp. 689-691, Mar. 1, 2011.
    5. C. Stolzenburg, A. Voss, T. Graf, M. Larionov, and A. Giesen, "Advanced pulsed thin disk laser sources." Proc. SPIE, vol. 6871, pp. 68710H-68710H-14, 2008.
    6. J. Rothhardt, T. Eidam, S. Hädrich, F. Jansen, F. Stutzki, T. Gottschall, T. V. Andersen, J. Limpert, and A. Tünnermann, “135 W average-power femtosecond pulses at 520 nm from a frequency-doubled fiber laser system,” Opt. Lett., vol. 36, no. 3, pp. 316–318, Feb. 1, 2011.
    7. Geoff Shannon, “Microwelding demands new laser tools.” Laser Focus World, vol. 47, Issue 10, Oct. 1, 2011.
    8. http://www.rp-photonics.com/index.html
    9. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. San Diego: Academic, 2007.
    10. J. Limpert, A. Liem, T. Gabler, H. Zellmer, A. Tünnermann, S. Unger, S. Jetschke, and H.-R. Müller, “High-average-power picosecond Yb-doped fiber amplifier,” Opt. Lett., vol. 26, no. 23, pp. 1849-1851, Dec. 1, 2001.
    11. Herbert G. Winful, “Polarization instabilities in birefringent nonlinear media: application to fiber-optic devices,” Opt. Lett., vol. 11, no. 1, pp. 33-35, Jan. 1986.
    12. F. Matera and S. Wabnitz, “Nonlinear polarization evolution and instability in a twisted birefringent fiber,” Opt. Lett., vol. 11, no. 7, pp. 467-469, Jul. 1986.
    13. J. Noda, K. Okamoto, and Y. Sasaki , “Polarization-maintaining fibers and their applications,” J. Lightwave Technol, vol. 4, no. 8, pp. 1071-1089, Agu. 1986.
    14. K. K. Chen, S. U. Alam, J. R. Hayes, H. J. Baker, D. Hall, R. McBride, J. H. V. Price, D. J. Lin, A. Malinowski, and D. J. Richardson, “56-W Frequency-doubled source at 530 nm pumped by a single-mode, single-polarization, picosecond, Yb3+-doped fiber MOPA,” IEEE Photonics Technol. Lett., vol. 22, no. 12, pp. 893-895, Jun. 15, 2010.
    15. Zhi Zhao, Bruce M. Dunham, Ivan Bazarov, and Frank W. Wise, “Generation of 110 W infrared and 65 W green power from a 1.3-GHz sub-picosecond fiber amplifier,” Opt. Express, vol. 20, no. 5, pp. 4850-4855, Feb. 5, 2012.
    16. W. E. Lamb Jr., “Theory of an optical maser,” Phys. Rev., vol. 134, no. 6A, pp. A1429-A1450, Jun. 15, 1964.
    17. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. John Wiley & Sons, 1991.
    18. L. E. Hargrove, R. L. Fork, and M. A. Pollack, “Locking of He–Ne laser modes induced by synchronous intracavity modulation”, Appl. Phys. Lett., vol. 5, no. 4, pp. 4-5, Jul. 1964.
    19. H.A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron., vol. 6, no. 6, pp. 1173-1185, Nov. 2000.
    20. R¨udiger Paschotta, Johan Nilsson, Anne C. Tropper, and David C. Hanna, “Ytterbium-doped fiber amplifiers”, IEEE J. Quantum Electron., vol. 33, no. 7, pp. 1049-1056, Jul. 1997.
    21. R. J. Mears, L. Reekie, I. M. Jauncey, and D. N.Payne, “Low-noise Erbium-doped fibre amplifier operating at 1.54 μm,” Electron. Lett., vol. 23, no. 19, pp. 1026-1028, Sep. 10, 1987.
    22. M. L. Dakss and W. J. Miniscalco, “Fundamental limits on Nd3+-doped fiber amplifier performance at 1.3 μm”, IEEE Photon. Technol. Lett., vol. 2, no. 9, pp. 650-652, Sep. 1990.
    23. Y. Ohishi, T. Kanamori, T. Nishi, and S. Takahashi, “A high gain, high output saturation power Pr3+-doped fluoride fiber amplifier operating at 1.3 μm”, IEEE Photon. Technol. Lett., vol. 3, no. 8, pp. 715-717, Aug. 1991.
    24. R. W. Boyd, Nonlinear Optics. San Diego, CA: Academic, 1993.
    25. P. Franken, A. E. Hill, C. W. Peters, and G. Weinreich “Generation of optical harmonics,” Phys. Rev. Letters, vol. 7, no. 4, pp. 118-119, Aug. 15, 1961.
    26. R.W. Terhune, P.D. Maker, C.M. Savage ” Optical harmonic generation in calcite,” Phys. Rev. Lett., vol. 8, no. 10, pp. 404-406, Apr. 16, 1962.
    27. D. A. Kleinman, “Theory of Second Harmonic Generation of Light,” Phys. Rev., vol. 128, no. 4, pp. 1761-1775, Nov. 1962.
    28. Ito H, Inaba H, “Optical properties and UV N2 laser-pumped parametric fluorescence in LiCOOH-H2O,” IEEE J. Quantum Electron., vol. 8, no. 6, pp. 612, Jun. 1972.
    29. J. F. Nye, Physical properties of crystals, Clarendon: Oxford, 1957.
    30. V.G. Dmitriev, D.N.Nikogosyan, “Effective nonlinearity coefficients for three-wave interactions in biaxial crystal of mm2 point group symmetry,” Opt. Commun., vol. 95, no. 1-3, pp. 173-182, Jan. 1993.
    31. A. Zaytsev, Chi-Luen Wang, Chih-Hsuan Lin, Ci-Ling Pan, “Robust diode-end-pumped Nd:GdVO4 laser passively mode-locked with saturable output coupler”, Laser Physics, vol. 21, no. 12, pp. 2029–2035, Nov. 12, 2011.
    32. C. Chen, Y. Wu, A. Jiang, B. Wu, G. You, R. Li, S. Lin, “New nonlinear-optical crystal: LiB3O5,” J. Opt. Soc. Am. B, vol. 6, no. 4, pp. 616-621, Apr. 1989.
    33. S. Lin, Z. Sun, B. Wu, C. Chen, “The nonlinear optical characteristics of a LiB3O5 crystal,” J. Appl. Phys. vol. 67, no. 2, pp. 634-638, Jan. 15, 1990.
    34. C. T. Chen, B. Wu, A. Jiang, and G. You, “A new-type ultraviolet SHG crystal - beta-BaB2O4,” Sci. Sin. B, vol. 28, pp. 235-243, 1985.
    35. J. D. Bierlein, “Potassium titanyl phosphate (KTP): Properties, recent advances and new applications,” Proc. SPIE, vol. 1104, pp. 2-12, Sep. 25, 1989.
    36. Fali Xie, Baichang Wu, Guiming You, and Chuangtian Chen, “Characterization of LiB3O5 crystal for second-harmonic generation,” Opt. Lett., vol. 16, no. 16, pp. 1237-1239, Aug. 15, 1991.
    37. D. A. Kleinman, A. Ashkin, and G. D. Boyd, “Second-harmonic generation of light by focused laser beams,” Phys. Rev., vol. 145, no. 1, pp. 338-379, May. 6, 1966.
    38. L. G. Gouy, “Sur une propriété nouvelle des ondes lumineuses,” C. R. Acad. Sci., vol. 110, pp. 1251-1253, 1890.
    39. Robert W. Boyd, “Intuitive explanation of the phase anomaly of focused light beams,” JOSA, vol. 70, no. 7, pp. 877-880, Jul. 7, 1980.
    40. G.D. Boyd and D.A. Kleinman, “Parametric interaction of focused gaussian light beams,” J. Appl. Phys., vol. 39, no. 8, pp. 3597-3639, Jul. 1968.
    41. P.L. Ramazza, S. Ducci, A. Zavatta, M. Bellini and F.T. Arecchi, “Second-harmonic generation from a picosecond Ti:Sa laser in LBO: conversion efficiency and spatial properties,” Appl. Phys. B, vol. 75, no. 1, pp. 53-58, Jul. 12, 2002.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE