簡易檢索 / 詳目顯示

研究生: 蘇宣泰
Hsuan-Tai Su
論文名稱: 利用自洽法研究AlGaN/GaN異質介面的電子特性
A self-consistent study of the electronic properties of an AlGaN/GaN hetero-junction
指導教授: 林叔芽
Shu-Ya Lin
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 40
中文關鍵詞: 自洽異質介面
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由薛丁格以及帕松方程式的自洽運算,可以找出由AlGaN/GaN所構成之HEMT其內的二維電子氣體密度。在AlGaN/GaN與其他Ⅲ-Ⅴ族最大的不同,由於晶格大小的差異所造成不可忽略的壓電效應,這個效應是需要被考慮進去的。我們藉由改變摻雜濃度與元件本身尺寸的調變,可以觀察其二維電子氣體密度的變化。由於是採用單一電子的等效模型,在考慮多體效應下,我們必須加入交換-相干 (exchange-correlation)的修正。另外我們運用一個簡單的模型,來探討此HEMT內的飽和電壓與其飽和電流。


    Density of the two dimensional electronic gas formed on the interface AlGaN/GaN of HEMT calculated through solving the Poisson and Schrödinger equations self-consistently. Different from other Ⅲ-Ⅴ compounds, due to the difference of lattice constants there is a considerable piezoelectric effect exists in this interface. We can vary the 2DEG density by moderating the size and the doping of the device. The many-body effect is considered by incorporating the exchange-correlation energy to the effective single electron model used for the calculations. Furthermore we will use a simple model to discuss the saturation voltage and the saturation current in this device.

    第一章 : 序論.......................................................................................1 第二章 : 理論方法..............................................................................3 2-1 AlGaN/GaN高速電子遷移率電晶體................................................3 2-1.1壓電效應.......................................................................................6 2-1.2 AlGaN/GaN介面結構與特性......................................................7 2-2 數值計算...........................................................................................11 2-2.1有限差分法( Finite difference method ) ....................................12 2-2.2 等效質量法( Effective method ) ..............................................13 2-2.3 一般二維電子氣體密度的估算................................................14 2-3 交換-相干修正( Exchange-correlation ) .......................................15 2-4 飽和電壓與電流...............................................................................16 第三章 : 結果與討論.......................................................................21 3-1 AlGaN材料特性...............................................................................21 3-1.1 壓電效應的影響........................................................................22 3-1.2 barrier厚度的影響......................................................................25 3-1.3 摻雜濃度的關係........................................................................26 3-1.4與一般估算法的比較.................................................................27 3-2交換-相干修正的影響.......................................................................29 3-3飽和電壓與電流的關係....................................................................30 3-3.1 飽和電壓....................................................................................30 3-3.2 飽和電流....................................................................................32 第四章 : 結論.........................................................................................34 附錄.........................................................................................................36 參考文獻................................................................................................39

    1. D.Delagebeaudeuf and N.T. Linh, IEEE Trans Electron Devices ED-29, pp.955, 1982
    2. M.L. Majewski, IEEE Trans Electron Devices ED-34, pp.1902, 1987
    3. Changchun Shi, Peter M. Asbeck, and Edward T. Yu, J. Appl. Phys., v74, pp.573, 1999
    4. O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, J. Hilsenbeck, Appl. Phys., v85, pp.3222, 1999
    5. A.T. Ping ,Q. Chen, J.W. Wang,M. Asif Khan, I. Adesida, IEEE Electron Device Lett 19, pp.54, 1998
    6. Kyu-Seok Lee, Doo-Hyeb Yoon, Sung-Bum Bae, Mi-Ran Park, and Gil-Ho Kim, ETRI Journal, v24, pp.270, 2002
    7. B. Jogai, J. Appl. Phys., v91, pp.3721, 2002
    8. S. Datta : ”Quantum Transport : Atom to Transistor” (Cambridge, 2005)
    9. J. L. M. Quiroz Gonzalez and P. Thompson, Comput. Phys., v11, pp.514, 1997
    10. C. Clay Marston and Gabriel G. Balint-Kurti, J. Chem. Phys, v91, pp.3571, 1989
    11. M. S. Shur, Mater. Res. Soc. Symp. Proc., v15, pp.483, 1998
    12. M. E. Mora-Ramos, L. M. Gaggero-Sager, Phys. Status Solidi, v220, pp.175, 2000
    13. L. Hedin, B. I. Lundqvist, J. Phys. C, v4, pp.2064, 1971
    14. D. Delagebeaudeuf and N. T. Linh, ED-29, pp. 955, 1982.
    15. Y. Zhang, J. Singh, J. Appl. Phys., v85, pp.587, 1999
    16. S. N. Mohammad and H. Morkoc, Progress Quantum Electronics, v20, pp.361, 1996
    17. Gerald D. Mahan, K. R. Subbaswamy (Plenum , New York , 1990)
    18. Rashmi, Abhinav Kranti, S. Haldar, R. S. Gupta, Solid-State Electronics, v46, pp.621, 2002
    19. Akiko Kobayashi, Otto F. Sankey, Stephen M, Volz, John D. Dow, Phys. Rev. B, v28, pp.935 1983

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE