簡易檢索 / 詳目顯示

研究生: 江謝鎮至
CHen-Chih Chiang-Hsieh
論文名稱: 使用蒙地卡羅方法評估多切面電腦斷層掃描劑量:假體研究
Radiation dose estimation using Monte Carlo method for multidetector CT: phantom study
指導教授: 董傳中
Chuan-Jong Tung
蔡惠予
Hui-Yu Tsai
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 89
中文關鍵詞: 電腦斷層掃描劑量蒙地卡羅方法假體
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 電腦斷層掃描檢查提供臨床上高品質和三度空間各方向、角度與切面的醫學影像,給予醫生在判斷受檢者的病兆上顯著的幫助。相對的,隨著掃描切片解析度越來越小、檢查的頻次越來越高,掃描檢查同時,受檢者所接受的輻射劑量與健康危害風險也日漸增加。有鑒於此,致力於研究電腦斷層檢查對病人造成的劑量貢獻並設法降低輻射劑量與改善醫療品質為目前國際間熱門趨勢。
    本研究利用蒙地卡羅程式BEAMnrcMP建立一台電腦斷層掃描儀模型,對此模型的照野大小、射束品質、劑量特性進行驗證,並完成了螺旋掃描模式的模擬,確認了臨床應用的可行性。另一方面,利用圓柱形與擬人形假體的電腦斷層影像建製成數位化體素假體。最後將假體代入蒙地卡羅劑量計算系統,分析電腦斷層劑量指標(CTDI),找出合適的絕對劑量轉換因子(normalization factor),進而計算出擬人形假體的器官劑量。
    以建立的蒙地卡羅劑量計算系統為基礎,作為台灣電腦斷層掃描檢查器官劑量與有效劑量的評估極具意義,對學術研究與臨床建議都有顯著的價值。


    摘要 i 誌謝 ii 目錄 iii 圖目錄 vi 表目錄 x 第一章 序論 1 1.1 研究目的 1 1.2 研究步驟與架構 4 第二章 理論與文獻探討 6 2.1 電腦斷層掃描儀幾何結構 6 2.2 電腦斷層掃描參數 7 2.3 電腦斷層掃描劑量 9 2.4 射束品質(beam quality) 12 2.5 蒙地卡羅方法 13 2.6 文獻回顧與研究革新 15 第三章 材料與方法 17 3.1 電腦斷層掃描儀(CT scanner) 17 3.2 蒙地卡羅劑量計算系統 17 3.3 機頭(gantry)幾何結構設計 20 3.4 模擬與臨床驗證 22 3.4.1 X光能譜(X-ray spectra)驗證 22 3.4.2 照野寬度(field width)驗證 23 3.4.3 半值層(half value layer, HVL)驗證 24 3.4.4 x軸射束分佈(off x-axis ratio, OAR)驗證 25 3.4.5 z軸射束分佈(z-axis beam profile)修正 26 3.5 螺旋掃描模式建立 28 3.6 相對劑量轉換絕對劑量 29 3.7 CT影像數位體素假體建立 29 3.7.1 人體組織分類 30 3.7.2 建立CT值-密度轉換曲線(CT Ramp) 31 3.7.3 建立圓柱形與ATOM人形CT影像數位假體 33 3.8 圓柱形與ATOM人形假體劑量分析 35 第四章 結果與討論 36 4.1 機頭幾何結構設計 36 4.1.1 設計限制與常見問題 36 4.1.2 設計結果 37 4.2 X光能譜驗證 41 4.3 照野寬度驗證 47 4.4 半值層驗證 48 4.5 x軸射束分佈驗證 49 4.6 z軸射束分佈修正 52 4.7 螺旋掃描模式建立 53 4.8 CT影像數位體素假體建立 57 4.8.1 人體組織分類 57 4.8.2 建立CT值-密度轉換曲線 60 4.8.3 建立圓柱形與ATOM人形CT影像數位假體 64 4.9 CTDI分析與絕對劑量轉換因子計算 66 4.10 ATOM人形假體器官劑量計算 78 4.11 絕對劑量轉換因子補充分析 80 第五章 結論 84

    1. Hounsfield GN. Computerized Transverse Axial Scanning (Tomography) .1. Description of System (Reprinted from British-Journal-of-Radiology, Vol 46, Pg 1016-1022, 1973). British Journal of Radiology 1995; 68:H166-H172.
    2. Sources and Effects of Ionizing Radiation, United Nations Scientific Committeeon the Effects of Atomic Radiation UNSCEAR 2000 Report to the General Assembly, with Scientific Annexes 2000.
    3. David J. Brenner PD, D.Sc., and Eric J. Hall, D.Phil., D.Sc. . Computed Tomography — An Increasing Source of Radiation Exposure. New England Journal of Medicine 2007, 11.
    4. International Electrotechnical Commission IS--, Edition 2.1, . "Medical Electrical Equipment-part 2-44: Particular Requirements for the Safety of X-ray Equipment for Computed Tomography". IEC, Geneva, Switzerland). 2001.
    5. Luxembourg OfOPotEC. European Guidelines on Quality Criteria for Computed Tomography. Report 16262 1999.
    6. Protection ICoR. ICRP Publication 60. 1991.
    7. 林怡君. 台灣小兒電腦斷層掃描劑量評估. 國立清華大學碩士論文 2006.7.
    8. Drexler G PW, Widenman L, Williams G and Zankl M. The Calculation of Dose form External Photon Exposures Using Reference Human Phantoms and Monte Carlo Methods Part III: Organ Doses in X-ray Diagnosis. 1984.
    9. Martin C, Giovanni B, John P. A comparison of radiation dose measured in CT dosimetry phantoms with calculations using EGS4 and voxel-based computational models. Physics in Medicine and Biology 1997:219.
    10. Caon M, Bibbo G, Pattison J. An EGS4-ready tomographic computational model of a 14-year-old female torso for calculating organ doses from CT examinations. Physics in Medicine and Biology 1999; 44:2213-2225.
    11. Caon M, Bibbo G, Pattison J. Monte Carlo Calculated Effective Dose to Teenage Girls from Computed Tomography Examinations. Radiat Prot Dosimetry 2000; 90:445-448.
    12. Choonik L, Jonathan LW, Choonsik L, Wesley EB. The UF series of tomographic computational phantoms of pediatric patients. Medical Physics 2005; 32:3537-3548.
    13. Robert JS, Choonik L, Choonsik L, et al. Organ and effective doses in newborn patients during helical multislice computed tomography examination. Physics in Medicine and Biology 2006:5151.
    14. Choonik L, Choonsik L, Robert JS, et al. Organ and effective doses in pediatric patients undergoing helical multislice computed tomography examination. Medical Physics 2007; 34:1858-1873.
    15. Jarry G, Demarco J, McNitt-Gray M. Monte Carlo dose verification of a commercial CT scanner with applications for patient specific dosimetry. Medical Physics 2002; 29:1344-1344.
    16. Jarry G, DeMarco JJ, Beifuss U, Cagnon CH, McNitt-Gray MF. A Monte Carlo-based method to estimate radiation dose from spiral CT: from phantom testing to patient-specific models. Physics in Medicine and Biology 2003; 48:2645-2663.
    17. DeMarco JJ, Cagnon CH, Cody DD, et al. A Monte Carlo based method to estimate radiation dose from multidetector CT (MDCT): cylindrical and anthropomorphic phantoms. Physics in Medicine and Biology 2005; 50:3989-4004.
    18. DeMarco JJ, Cagnon CH, Cody DD, et al. Estimating radiation doses from multidetector CT using Monte Carlo simulations: effects of different size voxelized patient models on magnitudes of organ and effective dose. Physics in Medicine and Biology 2007:2583.
    19. Bazalova M, Verhaegen F. Monte Carlo simulation of a computed tomography x-ray tube. Physics in Medicine and Biology 2007; 52:5945-5955.
    20. D.W.O. Rogers BW IK. BEAMnrc User Manual. NRCC Report PIRS-0509 2005.
    21. 高億峰. 評估VIP-Man胸部X光照像之器官劑量. 國立清華大學碩士論文 2003.
    22. Ernesto M-H, Iwan K. Efficient x-ray tube simulations. Medical Physics 2006; 33:2683-2690.
    23. 吳書瑋. 組織不均質及多葉式準直儀所造成能譜改變對蒙地卡羅方法模擬強度調控放射治療計畫的影響. 國立清華大學碩士論文 2007.7.
    24. Ay MR, Sarkar S, Shahriari M, Sardari D, Zaidi H. Assessment of different computational models for generation of x-ray spectra in diagnostic radiology and mammography. Medical Physics 2005; 32:1660-1675.
    25. http://physics.nist.gov/PhysRefData/XrayMassCoef/cover.html.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE