研究生: |
林子楓 Tz-Feng Lin |
---|---|
論文名稱: |
Induced Twisting in Self-assembly of Chiral Schiff-based Rod-Coil Amphiphiles 糖類旋光性之硬桿-柔軟兩性分子自組裝中的誘導螺旋行為 |
指導教授: |
何榮銘
Rong-Ming Ho 許千樹 Chain-Shu Hsu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 90 |
中文關鍵詞: | 誘導螺旋 、球晶 、兩性分子 、分子模擬 |
外文關鍵詞: | Induced Twisting, Hierarchical Self-assembly, Chiral Sugar-based Rod-Coil, Amphiphiles, Banded Spherulite, Simulation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Nature elegantly utilizes the self-assembly of supramolecules to construct functional superstructures. The self-assembled superstructures are formed by cooperatively secondary forces such as amphiphilic effect, polar ability, hydrogen bonding, columbic interactions, van der Waals forces, metal coordination, ionic bonding, and the chirality. Among them, the chiral effect on the self-assembly is essential for the formation of helical morphology. A variety of helical morphology including helical conformation, hierarchical helical structures and helical crystalline morphology have been observed in the self-assembly. Recently, helical superstructures have been obtained from the self-assembly of amphiphilic block copolymers containing charged helical blocks in buffer solutions. The chiral effect on the self-assembly of block copolymers (i.e., coil-coil molecules) is essential for the formation of helical morphology. In contrast to coil-coil molecules, the self-assembly rod-coil molecules possess strong segregation strength for phase separation due to the characteristics of rod segment. As a result, they are able to self-assemble into periodic textures even for small oligomeric molecules so as to provide an excellent system for the examination of chiral effect on self-assembled superstructures. Amphiphilic molecules offer numerous opportunities for chemical variations, and thus provide a crucial direction for the controlled fabrication of superstructures. The self-assembly of chiral lipid molecules (i.e., chiral amphiphiles) has been extensively studied, and a variety of dynamically changing morphologies in liquid crystalline (fluid) state were observed. Carbohydrate sugars provide a rich library of chiral building blocks, which are also biocompatible that makes them attractive candidates for being used successfully in the design of self-assembly chemistry. The morphologies of sugar-based amphiphiles affected by the introduction of different hydrophilic or hydrophobic parts and of unsaturation in the lipophilic moiety have been thoughtfully studied. However, how chiral information transfers from primary molecular structure to quaternary aggregates for the self-assembly system is still a challenging course to scientists. Recently, our research group demonstrated a novel nanohelical structure that was obtained from the self-assembly of chiral block copolymers, poly(styrene)-block-poly(L-lactide) (PS-PLLA). Here, we simply introduce a sugar entity of (i.e., a chiral entity) to rod-coil molecules. The self-assembly of the sugar-based rod-coil amphiphiles gives rise to a variety of interesting morphology. The central theme of this study is to understand the self-assembly processes by exploring various secondary forces, in particular the effect of chirality. We attempt to examine the self-assembly mechanisms in different environments including solution and bulk states so as to understand the kinetic processes of assembly.
The studies of sugar-based rod-coil amphiphiles have been carried out by differential scanning calorimetry (DSC), ultraviolet-visible spectrum (UV), circular dichroism (CD), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FE-SEM), and scanning probe microscopy (SPM) experiments. Sugar-based rod-coil amphiphiles exhibited both the lyotropic and thermotropic liquid crystalline behavior from our works. It is noted that complicate self-assembly process is involved in solution state. The sugar-based rod-coil amphiphiles appeared positive Cotton effect materials, and there is no odd-even effect with respect to the alkyl chain length of coil. Interestingly, we observed that the alkyl chain length of LC9 might be long enough to interrupt the arrangement of rod segments driven by liquid crystalline phase transformation. The self-assembly of LC9 and LC11 in solution or from melt appeared left-handed helical morphology as observed by TEM, FESEM and SPM. Surprisingly, banded spherulites were observed in the self-assembly of the chiral sugar-based rod-coil amphiphiles in bulk or thin film. The formation of the superstructure is driven by thermotropic liquid crystal behavior whilst the chiral effect of sugar-based entity induces the twisting of molecular aggregation. As a result, the transfer of chiral information from molecular level to quaternary superstructure can be identified.
(1) Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418-2421.
(2) Philip, D.; Stoddart, J. F. Angew. Chem., Int. Ed. Engl. 1996, 35, 1154-1196.
(3) Deng, T.; Chenb,C.; Honekerb,C.; Thomas, E. L. Polymer 2003, 44, 6549-6553.
(4) Muthukumar, M.; Ober, C. K., Thomas, E. L. Science 2002, 277, 1225-1232.
(5) Elemans, J. A. A. W.; Rowan, A. E.; Nolte, R. J. M. J. Mater. Chem. 2003, 13, 2661-2670.
(6) Lehn, J.-M. Supramolecular Chemistry; VCH: Weinheim, Germany, 1995.
(7) Lehn, J.-M. Science 2002, 295, 2400-2409.
(8) Barboiu, M.; Vaughan, G.; Kyritsakas, N.; Lehn, J.-M. Chem. Eur. J. 2003, 9, 763-769.
(9) Kato, T. Science 2002, 295, 2414-2418.
(10) Kanie, K.; Yasuda, T.; Ujiie, S.; Kato, T. Chem. Commun. 2000, 19, 1899-1900.
(11) Kanie, K.; Nishii, M.; Yasuda, T.; Taki, T.; Ujiie, S.; Kato, T. J. Mater. Chem., 2001, 11, 2875–2886.
(12) Kato, T.; Matsuoka, T.;Nishii, M.; Kamikawa,Y.; Kanie,K.; Nishimura,T.; Yashima, E.; Ujiie, S. Angew. Chem. Int. Ed. 2004, 43, 1969-1972.
(13) Schenning, A. P. H. J.; Herrikhuyzen, J. V.; Jonkheijm, P.; Chen, Z.; WJrthner, F.; Meijer, E. W. J. Am. Chem. Soc. 2002, 124, 10252-10253.
(14) Hamley, I. W. The Physics of Block Copolymers; VCH: Oxford University, New York, 1998.
(15) Bates, F. S.; Fredrickson, G. H. Annu. Rev. Phys. Chem. 1990, 41, 525-557.
(16) Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 1091-1098.
(17) Klok, H.-A.; Lecommandoux, S. Adv. Mater. 2001, 13, 1217-1229.
(18) Ruokolainen, J.; Tanner, J.; Ikkala, O.; ten Brinke, G.; Thomas, E. L. Macromolecules 1998, 31, 3532-3536.
(19) Ruokolainen, J.; Makinen, R.; Torkkeli, M.; Makela, T.; Serimaa, R.; ten Brinke, G.; Ikkala, O. Science 1998, 280, 557-560.
(20) Ruokolainen, J.; ten Brinke, G.; Ikkala, O. Adv. Mater. 1999, 11, 777-781.
(21) Ikkala, O.; ten Brinke, G. Science 2002, 295, 2407-2409.
(22) Halperin, A. Macromolecules 1990, 23, 2724-2731.
(23) Lee, M; Cho, B.-K.; Jang, Y.-G.; Zin, W.-C. J. Am. Chem. Soc. 2000, 122, 7449-7455.
(24) Lee, M.; Yoo, Y.-S. J. Mater. Chem. 2002, 12, 2161-2168.
(25) Ryu, J.-H.; Oh, N.-K.; Zin, W.-C.; Lee, M J. Am. Chem. Soc. 2004, 126, 3551-3558.
(26) Chen, J. T.; Thomas, E. L.; Ober, C. K.; Mao, G.-P. Science 1996, 273, 343-346.
(27) Osuji, C.; Chao, C.-Y.; Bita, I.; Ober, C. K.; Thomas, E. L. Adv. Func. Mater. 2002, 12, 735-758.
(28) Zubarev, E. R.; Pralle, M. U.; Sone, E. D.; Stupp, S. I. J. Am. Chem. Soc. 2001, 123, 4105-4106.
(29) Sone, E. D.; Zubarev, E. R.; Stupp, S. I. Angew. Chem. Int. Ed. 2002, 41, 1705-1709.
(30) Stupp, S. I.; LeBonheur, V.; Walker, K.; Li, L. S.; Huggins, K. E.; Kesser, M.; Amstutz, A. Science 1997, 276, 384-389.
(31) Stupp, S. I.; Braun, P. V. Science 1997, 277, 1242-1248.
(32) Zubarev, E. R.; Pralle, M. U.; Li, L.; Stupp, S. I. Science 1999, 283, 523-527.
(33) Tracz, A.; Jeszka, J. K.; Watson, M. D.; Pisula, W.; Mullen, K.; Pakula, T. J. Am. Chem. Soc. 2003, 125, 1682-1683.
(34) Thunemann, A. F.; Ruppelt, D.; Ito, S.; Mullen, K. J. Mater. Chem. 1999, 9, 1055-1057.
(35) Thunemann, A. F.; Ruppelt, D.; Burger, C.; Mullen, K. J. Mater. Chem. 2000, 10, 1325-1329.
(36) Thunemann, A. F.; Kubowicz, S.; Burger, C.; Watson, M. D.; Tchebotareva, N.; Mullen, K. J. Am. Chem. Soc. 2003, 125, 352-356.
(37) Watson, M. D.; Jackel, F.; Severin, N.; Rabe, J. P.; Mullen, K. J. Am. Chem. Soc. 2004, 126, 1402-1407.
(38) Pisula, W.; Menon, A.; Stepputat, M.; Lieberwirth, I.; Kolb, U.; Tracz, A.; Sirringhaus, H.; Pakula, T.; Mullen, K. Adv. Mater. 2005, 17, 684-689.
(39) Lee, M.; Kim, J. W.; Peleshanko, S.; Larson, K.; Yoo, Y. S.; Vaknin, D.; Markutsya, S.; Tsukruk, V. V. J. Am. Chem. Soc. 2002, 124, 9121-9128.
(40) Hill, J. P.; Jin, W. S.; Kosaka, A.; Fukushima, T.; Ichihara, H.; Shimomura, T.; Ito, K.; Hashizume, T.; Ishii, N.; Aida, T. Science 2004, 304, 1481-1483.
(41) Cornelissen, J. J. L. M.; Fischer, M.; Sommerdijk, N. A. J. M.; Nolte, R. J. M. Science 1998, 280, 1427-1430.
(42) Cornelissen, J. J. L. M.; Rowan, A. E.; Nolte, R. J. M.; Sommerdijk, N. A. J. M. Chem. Rev. 2001, 101, 4039-4070.
(43) Sommerdijk, N. A. J. M.; Holder, S. J.; Hiorns, R. C.; Jones, R. G.; Nolte, R. J. M. Macromolecules 2000, 33, 8289-8294.
(44) Engelkamp, H.; Middelbeek, S.; Nolte, R. J. M. Science 1999, 284, 785-788.
(45) Nelson, J. C.; Saven, J. G.; Moore, J. S.; Wolynes, P. G. Science 1997, 277, 1793-1796.
(46) Gin, M. S.; Yokozawa, T.; Prince, R. B.; Moore, J. S. J. Am. Chem. Soc. 1999, 121, 2643-2644.
(47) Mio, M. J.; Prince, R. B.; Moore, J. S.; Kuebel, C.; Martin, D. C. J. Am. Chem. Soc. 2000, 122, 6134-6135.
(48) Prince, R. B.; Brunsveld, L.; Meijer, E. W.; Moore, J. S. Angew.Chem., Int. Ed. 2000, 39, 228-230.
(49) Brunsveld, L.;Prince, R. B.; Meijer, E. W.; Moore, J. S. Org. Lett. 2000, 2, 1525-1528.
(50) Morino, K.; Maeda, K.; Yashima, E. Macromolecules 2003, 36, 1480-1486.
(51) Sakurai, S.-I.; Kuroyanagi, K; Morino, K.; Kunitake, M; Yashima, E. Macromolecules 2003, 36, 9670-9674.
(52) Goto, H; Okamoto, Y; Yashima, E. Macromolecules 2002, 35, 4590-4601.
(53) Yashima, E.; Matsushima, T.; Okamoto, Y. J. Am. Chem. Soc. 1997, 119, 6345-6359.
(54) Yashima, E.; Maeda, K.; Okamoto, Y. Nature 1999, 99, 449-451.
(55) Maeda, K.; Morino, K.; Yashima, E. J. Polym., Sci. Part A: Polym. Chem. 2003, 41, 3625–3631.
(56) Yashima, E.; Maeda, K.; Nishimura T. Chem. Eur. J. 2004, 10, 42-51.
(57) Yashima, E.; Nimura, T.; Matsushima, T.; Okamoto, Y. J. Am. Chem. Soc. 1996, 118, 9800.
(58) Saito, M. A.; Maeda, K.; Onouchi, H.; Yashima, E. Macromolecules 2000, 33, 4616.
(59) Onouchi, H.; Maeda, K.; Yashima, E. J. Am. Chem. Soc. 2001, 123, 7441.
(60) Brunsveld, L.; Zhang, H.; Vekemans, J. A. J. M.; Meijer, E.W. J. Am. Chem. Soc. 2000, 122, 6175-6182.
(61) Brunsveld, L.; Lohmeijer, B. G. G.; Vekemans, J. A. J. M.; Meijer, E.W. Chem. Commun. 2000, 23, 2305-2306.
(62) Hirschberg, J. H. K. K.; Brunsveld, L.; Ramzi, A.; Vekemans, J. A. J. M.; Sijbesma, R. P.; Meijer, E.W. Nature 2000, 407, 167-170.
(63) Schenning, A. P. H. J.; Jonkheijm, P.; Peeters, E.; Meijer, E.W. J. Am. Chem. Soc. 2001, 123, 409-416.
(64) Jonkheim, P.; Hoeben, F. J. M.; Kleppinger, R.; Herrikhuyzen, J. V.; Schenning, A. P. H. J.; Meijer, E. W. J. Am. Chem. Soc. 2003, 125, 15941-15949.
(65) Brunsveld, L.; Folmer, B. J. B.; Meijer, E. W.; Sijbesma, R. P. Chem. Rev. 2001, 101, 4071-4097.
(66) Jonkheijm, P.; Miura, A.; Zdanowska, M.; Hoeben, F. J. M.; Feyter, S. De; Schenning, A. P. H. J.; Schryver, F. C. De; Meijer, E.W. Angew. Chem. Int. Ed. 2004, 43, 74-78.
(67) Brunsveld, L.; Vekemans, J. A. J. M.; Hirschberg, J. H. K. K.; Sijbesma, R. P.; Meijer, E.W. Proc. Natl. Acad. Sci. USA 2002, 99, 4977-4982.
(68) Yoon, Y.; Zhang, A.; Ho, R.-M.; Cheng, S. Z. D.; Percec, V.;Chu, P. Macromolecules 1995, 29, 294-305.
(69) Yoon, Y.; Ho, R.-M.; Moon, B.; Kim, D.; McCreight, K. W.; Li, F.-M.; Harris, F. W.; Cheng, S. Z. D.; Percec, V.; Chu, P. Macromolecules 1996, 29, 3421-3431.
(70) Li, C. Y.; Yan, D.; Cheng, S. Z. D.; Ge, J. J.; Bai, F.; Zhang, J. Z.; Mann, I. K.; Chien, L.-C.; Harris, F. W.; Lotz, B. J. Am. Chem. Soc. 2000, 122, 72-79.
(71) Li, C. Y.; Yan, D.; Cheng, S. Z. D.; Bai, F.; He, T.; Chien, L.-C.; Harris, F. W.; Lotz, B. Macromolecules 1999, 32, 524-527.
(72) Li, C. Y.; Yan, D.; Cheng, S. Z. D.; Bai, F.; Ge, J. J.; He, T.; Chien, L.-C.; Harris, F. W.; Lotz, B. Phy. Rev. B. 1999, 60, 12675-12680.
(73) Li, C. Y.; Cheng, S. Z. D.; Ge, J. J.; Bai, F.; Zhang, J. Z.; Yan, D.; He, T.; Chien, L.-C.; Harris, F. W.; Lotz, B. Phys. Rev. Lett. 1999, 83, 4558-4561.
(74) Weng, X.; Li, C. Y.; Jin, S.; Zhang, D.; Zhang, J. Z.; Bai, F.; Harris, F. W.; Cheng, S. Z. D. Macromolecules 2002, 35, 9678-9686.
(75) Ho, R.-M.; Chiang, Y.-W.; Tsai, C.-C.; Lin, C. C.; Ko, B. T.; Huang, B.-H. J. Am. Chem. Soc. 2004, 126, 2704-2705.
(76) Ho, R.-M.; Chen, C.-K.; Chiang, Y.-W.; Lin, C. C.; Ko, B. T. submitted to J. Am. Chem. Soc., in prepared.
(77) A. Aggeli, I. A. Nyrkova, M. Bell, R. Harding, L. Carrick, T. C. B. Mcleish, A. N. Semenov, N. Boden, Proc. Natl. Acad. Sci. USA, 2001, 98, 11857-11862.
(78) Kitzerow, H. -S.; Bahr, C. Chirality in liquid crystals; VCH: Springer, New York, 2001.
(79) Helfrich, W.; Prost,J. Phys. Rev. A 1988, 38, 3065-3068.
(80) Ou-Yang, Z. C.; Liu, J. X. Phys. Rev. Lett. 1990, 65, 1679-1682.
(81) Ou-Yang, Z. C.; Liu, J. X. Phys. Rev. A 1991, 43, 6826-6836.
(82) Selinger, J. V.; Schnur. J. M. Phys. Rev. Lett. 1993, 71, 4091-4094.
(83) Selinger, J. V.; MacKintosh, F. C.; Schnur, J. M. Phys. Rev. E 1996, 53, 3804-3818.
(84) Nandi, N.; Bagchi, B. J. Am. Chem. Soc. 1996, 118, 11208-11216.
(85) Nandi, N.; Bagchi, B. J. Phys. Chem. A 1997, 101, 1343-1351.
(86) Fuhrhop, J. H.; Helfrich, W. Chem. Rev. 1993, 93, 1565-1582.
(87) Fuhrhop, J. H.; Schnieder, P.; Boekema, E.; Helfrich, W. J. Am. Chem. Soc. 1988, 110, 2861-2867.
(88) Spector, M. S.; Price, R. R.; Schnur, J. M. Adv. Mater., 1999, 11, 337-340.
(89) Spector, M. S.; Selinger, J. V.; Singh, A.; Rodriguez, J. M.; Price, R. R.; Schnur, J. M. Langmuir 1998, 14, 3493-3500.
(90) Gronwald, O.; Shinkai, S. Chem. Eur. J. 2001, 7, 4328-4334.
(91) van Doren, H. A.; Smits, E.; Pestman, J. M.; Engberts, J. B. F. N.; Kellogg, R. M. Chem. Soc. Rev., 2000, 29, 183-199.
(92) Jenekhe, S. A.; Chen, X. L. Science 1998, 279, 1903-1907.
(93) Jung, J. H.; Yoshida, K.; Shimizu, T. Langmuir 2002, 18, 8724-8727.
(94) Estroff, L. A.; Hamilton, A. D. Chem. Rev. 2004, 104, 1201-1217.
(95) John, G.; Masuda, M.; Okada, Y.; Yase, K.; Shimizu, T. Adv. Mater. 2001, 13, 715-718.
(96) John, G.; Jung, J. H.; Minamikawa, H.; Yoshida, K.; Shimizu, T. Chem. Eur. J. 2002, 8, 5495-5500.
(97) Shimizu, T.; John, G.; Masuda, M.; Okada, Y.; Yase, K. Adv. Mater. 2001, 13, 715-718.
(98) Shimizu, T.; Jung, J. H.; John, G.; Yoshida, K. J. Am. Chem. Soc. 2002, 124, 10674-10675.
(99) Shimizu, T.; Jung, J. H.; Yoshida, K. Langmuir 2002, 18, 8724-8727.
(100) Masuda, M.; Vill, V.; Shimizu, T. J. Am. Chem. Soc. 2002, 122, 12327-12333.
(101) Laurent, N.; Lafon, D.; Dumoulin, F.; Boullanger, P.; Mackenzie, G.; Kouwer, P. H. J.; Goodby, J. W. J. Am. Chem. Soc. 2003, 125, 15499-15506.
(102) Sung, C.-H.; Kung, L.-R.; Hsu, C.-S.; Lin, T.-F.; Ho, R.-M. Angew. Chem. Int. Ed. manuscript in revised. All the synthetic works were done by Sung’s Ph.D. program, and we thank for Prof. Hsu kindly promotion of our cooperation study.
(103) Ho, R.-M.; Ke, K.-Z.; Chen, M. Macromolecules 2000, 33, 7529-7537.
(104) Schultz, J. M.; Kinloch, D. R. Polymer 1969, 10, 271-278.
(105) Bassett, D. C.; Hodge, A. M. Polymer 1978, 19, 469-472.
(106) Bassett, D. C.; Hodge, A. M. Proc, R. Soc. London, Ser. A 1981, 377, 61.
(107) Bassett, D. C.; Vaughan, A. S. Polymer 1985, 26, 717-725.
(108) Bassett, D. C.; Olley, R. H.; Al-Raheil, A. M. Polymer 1988, 29, 1539-1543.
(109) Geil, P. H. in Polymer Single Crystals; Mark, H. F., Immergut, E. H., Eds.; John Wiley & Sons: New York (1963).
(110) Price, F. P. J. Polym. Sci. 1959, 39, 139-150.
(111) Keller, A. J. Polym. Sci. 1959, 39, 151-173.
(112) Fujiwara, Y. J. Appl. Polym. Sci. 1960, 4, 10.
(113) Keller, A. J. Polym. Sci. 1955, 17, 351.
(114) Keith, H. D.; Padden, F. J., Jr. J. Polym. Sci. 1959, 39, 101-122.
(115) Keith, H. D.; Padden, F. J., Jr. J. Polym. Sci. 1959, 39, 123-138.
(116) Keith, H. D.; Padden, F. J., Jr. Polymer 1984, 25, 28.
(117) Keller, J. J. Polym. Sci. 1955, 17, 291-307.
(118) Hoffman, J. D.; Lauritzen, J. I. J. Res. Natl. Bur. Stand. 1961, 65A, 297.
(119) Lustiger, A.; Lotz, B.; Duff, T. S. J. Polym. Sci. Polym. Phys. Ed. 1989, 27, 561-579.
(120) Singfield, K. L.; Klass, J. M.; Brown, G. R. Macromolecules 1995, 28, 8006.
(121) Lotz, B.; Cheng, S. Z. D. Polymer 2005, 46, 577-610.
(122) Pisula, W.; Kastler, M.; Wasserfallen, D.; Pakula, T.; Mullen, K. J. Am. Chem. Soc. 2004, 126, 8074-8075 and references therein.
(123) Clayden, J.; Lund, A.; Vallverdu´, L.; Helliwell, M. Nature 2004, 431, 966-971.