簡易檢索 / 詳目顯示

研究生: 謝昀達
Hsieh, Yun-Da
論文名稱: 用於多重存取具頻率選擇性快速衰退通道下之一個時空碼設計的分集與多工增益權衡
A Study of Diversity-Multiplexing Gain Tradeoff of a Space-Time Code Design over Multiple Access Frequency-Selective Fast Fading Channels
指導教授: 呂忠津
Lu, Chung-Chin
口試委員: 林茂昭
Lin, Mao-Chao
蘇育德
Su, Yu-The
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 80
中文關鍵詞: 時空碼多重存取頻率選擇快速衰退通道時間空間碼設計之線性調變分集增益多工增益分集與多工增益權衡
外文關鍵詞: Multiple access frequency-selective fast fading channel
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在現代社會中,筆記型電腦及智慧型手機已成為生活中不可或缺的一部分。
    隨著行動裝置的普及,對通訊的需求也越來越大。為了滿足人類的需求,最
    有效的改善方式是增加無線通訊傳輸通道的容量(Channel capacity)。其中最
    有效的方法是增加傳輸頻寬,也就是使用寬頻(Wide-band)無線通訊,然而在
    實際使運用中,頻寬是有限的。另一種有有效的方式是使用多輸出多輸入系
    統(MIMO),利用增加天線數量來提供更多的通道容量。此系統的特色是傳輸
    通道的容量會與傳輸及接收天線的數量呈線性增加。在多重存取通道(multipleaccess
    channel)中,多使用者多輸出多輸入系統(multi-user MIMO)可以進一步增
    加頻寬使用效率。
    近年來,時間空間碼已被證明是可以有效提高頻譜效率及降低錯誤率的
    方法。從1998年起,Alamouti、Tarokh及Oggier等人提出各種時間空間碼的設
    計,並不斷加以改進。隨著對於資料傳輸率的要求越來越高,傳統上假設通
    道是頻率非選擇性通道(Frequency-nonselective fading channel)已不太適用。因
    此,對於多重路徑的環境,我們可以有更多的分集增益。
    在本論文中,我們推算了在多使用者頻率選擇快速衰減通道下線性調變的
    時間空間碼的設計準則。接著我們依照此準則來建構一個時間空間碼。此時間
    空間碼編碼器是利用可除性代數所設計的最佳編碼器。接下來我們推導出在多
    使用者頻率選擇快速衰減通道下此時間空間碼的分集與多工增益的權衡。


    In this thesis, we derived the rank design criteria of a space-time coding scheme for linear modulation over multiple access frequency-selective fast fading channel with oversampling technique. We introduced a multi-user space-time code constructed by division algebra.
    Then we evaluated the diversity and multiplexing gain tradeoff for multiple access frequency-selective fast fading channel.
    We showed that the diversity and multiplexing gain tradeoff with a temporal code is better than the optimal one without a temporal code for low to medium multiplexing gains.

    1 Introduction 5 2 Frequency-Selective Fading Channel Model 7 2.1 Time-variant Linear Model . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 Tapped-Delay-Line Channel Model . . . . . . . . . . . . . . . . . . 9 2.3 WSS-US Two-path channel . . . . . . . . . . . . . . . . . . . . . . . 13 2.4 A separable WSS-US Multipath Fading Channel with One-sided Gaussian Power Profile . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3 A Scheme for Space-Time Coding with Linear Modulation in Multiple Access Channels 19 3.1 A Space-Time coding Scheme for Multiple Users . . . . . . . . . . . 19 3.2 Space-time Code Design Criteria for Linear Modulation . . . . . . . 23 4 Space-Time Encoder Design 33 4.1 Convolutional Encoder . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.2 Galois Theory and Division Algebra . . . . . . . . . . . . . . . . . . 34 4.2.1 Galois Group . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.2.2 Galois Extension . . . . . . . . . . . . . . . . . . . . . . . . 35 4.2.3 Cyclic Extension . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2.4 Division Algebra . . . . . . . . . . . . . . . . . . . . . . . . 39 4.3 A Spatial Encoder for Full rank Matrix Design . . . . . . . . . . . . . 42 4.3.1 Embedding Field Extension into Mn×n(F) . . . . . . . . . . 44 4.3.2 Space-Time Code Design with Full Rank for Single User . . . 44 4.3.3 Space-Time Code Design with Full Rank for Multiple Users . 46 5 The Diversity and Multiplexing Gain Tradeoff in Multiple Access Frequency- Selective Fading Channel 49 5.1 The Diversity and Multiplexing Gain Tradeoff in Single-User Frequency- Nonselective Fast Fading Channel . . . . . . . . . . . . . . . . . . . 49 5.2 The Diversity and Multiplexing Gain Tradeoff in Single-User Frequency- Selective Fast Fading Channel with a Temporal Code . . . . . . . . . 50 5.3 The Diversity and Multiplexing Gain Tradeoff for Multiple Users . . . 52 6 MLSD Viterbi Decoder and Simulation Results 68 6.1 MLSD Viterbi Decoder . . . . . . . . . . . . . . . . . . . . . . . . . 68 6.2 The finite-state machine for the Viterbi Decoder . . . . . . . . . . . . 69 6.3 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.3.1 Parameter Setting . . . . . . . . . . . . . . . . . . . . . . . . 72 6.3.2 Performance Comparison over Frequency-Selective Fast Fading Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 7 Conclusion 76

    [1] ˙I. E. Telatar, “Capacity of multi-antenna Gaussian channels,” in European Transactions on Telecommunications, vol. 10, no. 6, pp.585-589, 1999.
    [2] V. Tarokh, N. Seshadri and A. R. Calderbank, “Space-time codes for high data rate wireless communication: Performance criterion and code construction,” in IEEE Transactions on Information Theory, vol. 44, no. 2, pp. 744-765, Mar. 1998.
    [3] S. M. Alamouti, “A simple transmit diversity technique for wireless communications,” in IEEE Journal on Selected Areas in Communications, vol. 16, no. 8, pp. 1451-1458, Oct. 1998.
    [4] V. Tarokh, H. Jafarkhani and A. R. Calderbank, “Space-time block codes from orthogonal designs,” in IEEE Transactions on Information Theory, vol. 45, no. 5, pp. 1456-1467, July 1999.
    [5] B. A. Sethuraman, B. S. Rajan and V. Shashidhar, “Full-diversity, high-rate space-time block codes from division algebras,” in IEEE Transactions on Information Theory, vol. 49, no. 10, pp. 2596-2616, Oct. 2003.
    [6] C.-C. Cheng and C.-C. Lu, “Space-time code design for CPFSK modulation over frequency-nonselective fading channels,” in IEEE Transactions on Communications, vol. 53, no. 9, pp. 1477-1489, Sept. 2005.
    [7] S.-C. Chou, “A space-time code design for CPFSK modulation over frequencyselective fading channels,” Master’s thesis, National Tsing Hua University, Taiwan, 2006.
    [8] M.-C. Shih, “Space-time code design for QPSK modulation over frequencynonselective fading channels, ”Master’s thesis, National Tsing Hua University, Taiwan, 2007.
    [9] H.-Y. Cheng, “Space-time code design over frequency-nonselective fading channels by division algebras,” Master’s thesis, National Tsing Hua University, Taiwan, 2008.
    [10] Y.-H. Lin, “A receicer with oversampling for multipath fading channels,” Master’s thesis, National Tsing Hua University, Taiwan, 1994.
    [11] C.-M. Li, “Space-time code design for linear modulation over frequencyselective fading cahnnels,” Master’s thesis, National Tsing Hua University, Taiwan, 2017.
    [12] L. Zheng and D. N. C. Tse, “Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels,” in IEEE
    transactions on Information Theory, vol. 49, no. 5, pp. 1073-1096, May 2003.
    [13] D. N. C. Tse, P. Viswanath and L. Zheng, “Diversity-multiplexing tradeoff in multiple-access channels,” in IEEE Transactions on Information Theory, vol. 50, no. 9, pp. 1859-1874, Sept. 2004.
    [14] H.-J. Yu, “A study of diversity-multiplexing tradeoff of a space-time code design over frequency-selective fast fading channels,” Master’s thesis, National Tsing Hua University, Taiwan, 2020.
    [15] C. -C. Liu, “A study of diversity-multiplexing tradeoff of a space-time code design over multiple access frequency-nonselective fading channels,” Master’s thesis, National Tsing Hua University, Taiwan, 2018.
    [16] P. A. Bello, “Characterization of randomly time-variant linear channels,” IEEE Trans. Commun. Syst., vol. CS-11, no. 4, pp. 360–393, Dec. 1963.
    [17] F. Oggier and E. Viterbo, “Algebraic number theory and code design for Rayleigh fading channels,” Found. Trends Commun. Inform. Theory, vol. 1, 2004.
    [18] S. Tavildar and P. Viswanath, “Approximately universal codes over slow-fading channels,” in IEEE Transactions on Information Theory, vol. 52, no. 7, pp. 3233-3258, July 2006.
    [19] C.-C. Lu and J.-P. Chen, “An optimal test of Zp-convolutional coded CPFSK for communications over Rayleigh fading channels,” to be submitted for publication.
    [20] S. H. Jamali and T. Le-Ngoc, Coded-Modulation Techniques for Fading Channels. Boston: Kluwer, 1994.
    [21] I. N. Herstein, Abstract Algebra, 3rd edn.,Wiley, 1995.
    [22] I. N. Herstein, Topics in Algebra, Ginn and Company, 1964.
    [23] F. Oggier, G. Rekaya, J.-C. Belfiore and E. Viterbo, “Perfect space–time block codes,” in IEEE Transactions on Information Theory, vol. 52, no. 9, pp. 3885- 3902, Sept. 2006.
    [24] P. Elia, B. A. Sethuraman and P. V. Kumar, “Perfect space-time codes with minimum and non-minimum delay for any number of antennas,” 2005 International Conference on Wireless Networks, Communications and Mobile Computing, Maui, HI, USA, 2005, pp. 722-727 vol.1.
    [25] F. Oggier, J.-C. Belfiore and E. Viterbo, “Cyclic Division Algebras: A Tool for Space-Time Coding,” Foundations and Trends in Communications and Information Theory, vol. 4, pp. 1-95, Jan. 2007.
    [26] T. M. Cover and J. A. Thomas, Elements of Information Theory, John Wiley & sons, 2012.
    [27] C. Davis, W. M. Kahan, and H. F. Weinberger, “Norm-preserving dilations and their applications to optimal error bounds,” in SIAM Journal on Numerical Analysis, vol. 19, no. 9, pp. 445-469, 1982.
    [28] J. G. Proakis, Digital Communications, 5th edn., McGraw-Hill, 2008.
    [29] T. W. Hungerford, Algebra, Springer, 1974.
    [30] N. Jacobson, Basic Algebra I, 2nd edn., New York: W.H. Freeman, 1985.
    [31] M. Badr and J.-C. Belfiore, “Distributed space-time block codes for the MIMO Multiple Access Channel,” 2008 IEEE International Symposium on Information Theory, Toronto, ON, Canada, pp. 2553-2557, 2008.

    QR CODE