研究生: |
林傳皓 Lin, Chuan-Hao |
---|---|
論文名稱: |
通過硒化ZnO奈米線形成ZnO/ZnSe核殼結構作為催化劑進行壓電光催化降解 Piezo-photocatalytic Degradation by Selenizing ZnO Nanowires to Form ZnO/ZnSe Core-shell Nanostructures as Catalysts |
指導教授: |
陳力俊
Chen, Lih-Juann |
口試委員: |
闕郁倫
Chueh, Yu-Lun 闕郁倫 Chueh, Yu-Lun |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 英文 |
論文頁數: | 91 |
中文關鍵詞: | 氧化鋅 、壓電 、降解 、光催化 |
外文關鍵詞: | ZnO, Peizoelectric, Degradation, Photocatalytic |
相關次數: | 點閱:72 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,隨著環保意識的抬頭,如何乾淨並有效的處理各種汙染物也成為一個很重要的議題,而壓電光催化降解是現在備受關注的一種處理方式。本研究針對紡織工業中常見的一種汙染物—剛果紅,使用壓電光催化的方式來對它進行降解,除此之外,透過type-II的ZnO/ZnSe核殼複合結構,來提升電子電洞對的分離效果,以進一步提升壓電光降解的效率。
本研究通過固液氣法並搭配化學氣相沉積的技術,在成長方向(100)的p型矽基板上沉積ZnO奈米線,接著透過表面硒化的方式,將表層的ZnO硒化成ZnSe,以形成type-II的ZnO/ZnSe核殼複合結構。其中研究了在不同的硒化溫度下形成的ZnO/ZnSe核殼複合結構,分析它們壓電光催化降解剛果紅的能力。
結果顯示,隨著硒化溫度的提升,ZnSe的厚度也跟著變厚,使電子跟電洞的分離效果變好,讓壓電光催化降解的效率因而隨之提升。而在攝氏225 度的情況下硒化ZnO奈米線,可以達到最好的結果,將其與未經過硒化的ZnO奈米線相比,可以提升約287 % 的壓電光催化降解效率。然而,在硒化溫度大於攝氏225度的情況下,ZnSe的厚度會變得太厚導致材料沒有辦法有效的吸收光並將電子與電洞進行分離,使其壓電光催化降解效率反而下降。
With the rise of environmental awareness, finding a clean and effective treatment of various pollutants has become an important issue in recent years. Piezo-photocatalytic degradation has gained significant attention as a method for addressing this concern. The present study focuses on a common pollutant in the textile industry, Congo Red, and uses a piezo-photocatalyst to degrade it. Additionally, we enhance the separation efficiency of electron-hole pairs by forming a type-II ZnO/ZnSe core-shell structure, thereby further improving the efficiency of piezo-photocatalytic degradation.
In the present study, ZnO nanowires were fabricated using a combination of the vapor-liquid-solid method and the chemical vapor deposition technique. Subsequently, the ZnO nanowires were selenized, and the surface was converted into ZnSe to form a type-II ZnO/ZnSe core-shell structure. Afterwards, we measured the degradation efficiency of Congo Red with ZnO/ZnSe core-shell structures that were selenized under different temperatures.
The results indicate that with increasing selenization temperature, the thickness of ZnSe gradually increases, improving the efficiency of separation of electron-hole pairs and thus enhancing the efficiency of piezo-photocatalytic degradation. In particular, selenizing ZnO nanowires at 225 °C yielded the best result, with a 287% increase in piezo-photocatalytic degradation efficiency compared to untreated ZnO nanowires. However, at selenization temperatures above 225 °C, the thickness of ZnSe becomes excessive, decreasing light absorption and preventing the separation of electron-hole pair, resulting in a decrease in piezo-photocatalytic degradation efficiency.
(1) Pratap, B.; Kumar, S.; Nand, S.; Azad, I.; Bharagava, R. N.; Romanholo Ferreira, L. F.; Dutta, V. Wastewater Generation and Treatment by Various Eco-Friendly Technologies: Possible Health Hazards and Further Reuse for Environmental Safety. Chemosphere 2023, 313, 137547.
(2) Water and Climate Change. UN World Water Development Report 2020.
(3) Hamawand, I. Energy Consumption in Water/Wastewater Treatment Industry — Optimisation Potentials. Energies 2023, 16, 2433.
(4) Benkhaya, S.; M’rabet, S.; ElHarfi, A. Classifications, Properties, Recent Synthesis and Applications of Azo Dyes. Heliyon 2020, 6, 3271.
(5) Kanagaraj, J.; Senthil Velan, T.; Mandai, A. B. Biological Method for Decolourisation of an Azo Dye: Clean Technology to Reduce Pollution Load in Dye Waste Water. Clean Technologies and Environmental Policy 2012, 14, 565–572.
(6) Stolz, A. Basic and Applied Aspects in the Microbial Degradation of Azo Dyes. Applied Microbiology and Biotechnology 2001, 56, 69–80.
(7) Selvaraj, V.; Swarna Karthika, T.; Mansiya, C.; Alagar, M. J. An over Review on Recently Developed Techniques, Mechanisms and Intermediate Involved in the Advanced Azo Dye Degradation for Industrial Applications. Journal of Molecular Structure 2021, 1224, 129195.
(8) Pavel, M.; Anastasescu, C.; State, R. N.; Vasile, A.; Papa, F.; Balint, I. Photocatalytic Degradation of Organic and Inorganic Pollutants to Harmless End Products: Assessment of Practical Application Potential for Water and Air Cleaning. Catalysts 2023, 13, 380.
(9) Mashuri, S. I. S.; Ibrahim, M. L.; Kasim, M. F.; Mastuli, M. S.; Rashid, U.; Abdullah, A. H.; Islam, A.; Asikin-Mijan, N.; Tan, Y. H.; Mansir, N.; Kaus, N. H. M.; Hin, T. Y. Y. Photocatalysis for Organic Wastewater Treatment: From the Basis to Current Challenges for Society. Catalysts 2020, 10, 1–29.
(10) Siddiqui, S. I.; Allehyani, E. S.; Al-Harbi, S. A.; Hasan, Z.; Abomuti, M. A.; Rajor, H. K.; Oh, S. Investigation of Congo Red Toxicity towards Different Living Organisms: A Review. Processes 2023, 11, 1–12.
(11) Ditri, E. L. Z. and J. W. Direct Detection of SERCA Calcium Transport and Small-Molecule Inhibition in Giant Unilamellar Vesicles. Physiology & Behavior 2017, 176, 139–148.
(12) Medintz, I. L.; Uyeda, H. T.; Goldman, E. R.; Mattoussi, H. Quantum Dot Bioconjugates for Imaging, Labelling and Sensing. Nature Materials 2005, 4, 435–446.
(13) Avouris, P.; Chen, Z.; Perebeinos, V. Carbon-Based Electronics. Nature Nanotechnology 2007, 2, 605–615.
(14) Lieber, C. M.; Wang, Z. L.F. Functional Nanowires. MRS Bulletin 2007, 32, 99–108.
(15) Geim, A. K.; Novoselov, K. S. The Rise of Graphene. Nature Materials 2007, 6, 183-191.
(16) Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and Optoelectronics of Two-Dimensional Transition Metal Dichalcogenides. Nature Nanotechnology 2012, 7, 699–712.
(17) Khan, F. A. Applications of Nanomaterials in Human Health, Springer 2020.
(18) Kolahalam, L. A.; Kasi Viswanath, I.V.; Diwakar, B. S.; Govindh, B.; Reddy, V.; Murthy, Y. L. N. Review on Nanomaterials: Synthesis and Applications. Materials Today: Proceedings 2019, 18, 2182–2190.
(19) Singh, N. B. Handb. Green Synthesis of Nanomaterials. Microbial Nanotechnology 2022, 12, 225–254.
(20) Mohammad, S. N. Analysis of the Vapor-Liquid-Solid Mechanism for Nanowire Growth and a Model for This Mechanism. Nano Letter 2008, 8, 1532–1538.
(21) Wu, Y.; Yang, P. Direct Observation of Vapor-Liquid-Solid Nanowire Growth. Journal of the American Chemical Society 2001, 123, 3165–3166.
(22) Hussein, M. Fabrication and Characterization of GaN-Based Nanowires for Photoelectrochemical Water Splitting Applications. PhD Thesis, Department of Physics, Chonnam National University, 2015.
(23) Zhang, Q.; Lee, I.; Joo, J. I. B.; Zaera, F. Core-Shell Nanostructured Catalysts. Accounts of Chemical Research 2013, 46, 1816-1824.
(24) Gao, X.; Wang, C.; Xu, Q.; Lv, H.; Chen, T.; Liu, C.; Xi, X. N-Doped K3Ti5Nbo14@TiO2 Core-Shell Structure for Enhanced Visible-Light-Driven Photocatalytic Activity in Environmental Remediation. Catalysts 2019, 9, 106.
(25) Xu, T.; Wang, P.; Wang, D.; Zhao, K.; Wei, M.; Liu, X.; Liu, H.; Cao, J.; Chen, Y.; Fan, H.; Yang, L. J. Ultrasound-Assisted Synthesis of Hyper-Dispersed Type-II Tubular Fe3O4@SiO2@ZnO/ZnS Core/Shell Heterostructure for Improved Visible-Light Photocatalysis. Journal of Alloys and Compounds. 2020, 838, 155689.
(26) Zhai, J.; Tao, X.; Pu, Y.; Zeng, X. F.; Chen, J. F. Core/Shell Structured ZnO/SiO2 Nanoparticles: Preparation, Characterization and Photocatalytic Property. Applied Surface Science. 2010, 257, 393–397.
(27) Das, S.; Pérez-Ramírez, J.; Gong, J.; Dewangan, N.; Hidajat, K.; Gates, B. C.; Kawi, S. Core-Shell Structured Catalysts for Thermocatalytic, Photocatalytic, and Electrocatalytic Conversion of CO2. Chemical Society Reviews. 2020, 49, 2937–3004.
(28) Mitchell, J. W.; Gregory, L. E. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature: New Biology 1972, 238, 37–38.
(29) Liu, E.; Hu, Y.; Li, H.; Tang, C.; Hu, X.; Fan, J.; Chen, Y.; Bian, J. Photoconversion of CO2 to Methanol over Plasmonic Ag/TiO2 Nano-Wire Films Enhanced by Overlapped Visible-Light-Harvesting Nanostructures. Ceramics International 2015, 41, 1049–1057.
(30) Afroz, K.; Moniruddin, M.; Bakranov, N.; Kudaibergenov, S.; Nuraje, N. A Heterojunction Strategy to Improve the Visible Light Sensitive Water Splitting Performance of Photocatalytic Materials. Journal of Materials Chemistry A 2018, 6, 21696–21718.
(31) Ong, C. B.; Ng, L. Y.; Mohammad, A. W. A Review of ZnO Nanoparticles as Solar Photocatalysts: Synthesis, Mechanisms and Applications. Renewable and Sustainable Energy Reviews 2018, 81, 536–551.
(32) Rajput, R. B.; Kale, R. B. Hydro/Solvothermally Synthesized Visible Light Driven Modified SnO2 Heterostructure as a Photocatalyst for Water Remediation: A Review. Environmental Advances 2021, 5, 100081.
(33) Chen, X.; Mao, S. S. Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications and Applications. Chemical Reviews Journal 2007, 107, 2891–2959.
(34) Ren, H.; Koshy, P.; Chen, W. F.; Qi, S.; Sorrell, C. C. J. Photocatalytic Materials and Technologies for Air Purification. Journal of Hazardous Materials 2017, 325, 340–366.
(35) Yang, Y.; Wu, Z.; Yang, R.; Li, Y.; Liu, X.; Zhang, L.; Yu, B. Insights into the Mechanism of Enhanced Photocatalytic Dye Degradation and Antibacterial Activity over Ternary ZnO/ZnSe/MoSe2 Photocatalysts under Visible Light Irradiation. Applied Surface Science 2021, 539, 148220.
(36) Curie, J.; Curie, P. Development by Compression of Polar Electricity in Hemihedral Crystals with Inclined Faces. Bull. la Société Minéralogique 1880, 3, 90–93.
(37) Zhou, L.; Meng, L.; Jia, H.; Lu, Y.; Liang, T.; Yuan, Y.; Liu, C.; Dong, Z.; Hu, L.; Guan, P.; Zhou, Y.; Li, M.; Wan, T.; Han, Z.; Chu, D. Recent Advances in Piezocatalysts for Dye Degradation. Advanced Sustainable Systems 2024, 5, 2300652.
(38) Starr, M. B.; Wang, X. Coupling of Piezoelectric Effect with Electrochemical Processes. Nano Energy 2014, 14, 296–311.
(39) Tu, S.; Guo, Y.; Zhang, Y.; Hu, C.; Zhang, T.; Ma, T.; Huang, H. Piezocatalysis and Piezo-Photocatalysis: Catalysts Classification and Modification Strategy, Reaction Mechanism, and Practical Application. Advanced Functional Materials 2020, 30, 1–31.
(40) Jiang, Z.; Tan, X.; Huang, Y. Science of the Total Environment Piezoelectric Effect Enhanced Photocatalysis in Environmental Remediation: State-of-the-Art Techniques and Future Scenarios. Science of The Total Environment 2022, 806, 150924.
(41) Güell, F.; Galdámez-Martínez, A.; Martínez-Alanis, P. R.; Catto, A. C.; daSilva, L. F.; Mastelaro, V. R.; Santana, G.; Dutt, A. ZnO-Based Nanomaterials Approach for Photocatalytic and Sensing Applications: Recent Progress and Trends. Materials Advances 2023, 4, 3685–3707.
(42) Djurišić, A. B.; Leung, Y. H. Optical Properties of ZnO Nanostructures. Small 2006, 2, 944–961.
(43) Sharma, Y. C.; Ansari, P.; Sharma, R.; Mathur, D.; Dar, R. A. Bandgap Tuning of Optical and Electrical Properties of Zinc Selenide. Chalcogenide Letters 2021, 18, 183–189.
(44) Gupta, T.; Chauhan, R. P. Optical, Dielectric and Photocatalytic Properties of ZnO, ZnSe, and ZnO/ZnSe Photocatalyst. Optical Materials 2023, 142, 114045.
(45) Ambacher, O.; Christian, B.; Feil, N.; Urban, D. F.; Elsässer, C.; Prescher, M.; Kirste, L. Wurtzite ScAlN, InAlN, and GaAlN Crystals, a Comparison of Structural, Elastic, Dielectric, and Piezoelectric Properties. Journal of Applied Physics 2021, 130, 045102.
(46) Zhang, Q.; Li, H.; Ma, Y.; Zhai, T. ZnSe Nanostructures: Synthesis, Properties and Applications. Progress in Materials Science 2016, 83, 472–535.
(47) Huang, F.-K. Effects of Thickness and Roughness of Single-Crystal h-BN Dielectric Interlayer on the Performance of ZnO/h-BN/Al Nanolasers. MS Thesis, Department of Materials Science and Engineering, National Tsing Hua University, 2022
(48) Tian, F.; Yang, Y.; Zhang, Y.; Li, X.; Liu, X.; He, Y.; Wu, Z. Rationally Designed ΒCD-ZnO/ZnSe Heterojunction with Cavity Structure for Enhanced Solar Photocatalytic Degradation of AZO. Materials Letters 2022, 324, 132733.
(49) Chen, Y.-H. The Synthesis and Applications of Heterostructured ZnSe Nanoparticles/Si Wires Arrays and Cu-Oxide Microstructures. MS Thesis, Department of Materials Science and Engineering, National Tsing Hua University, 2013.
(50) Bootluck, W.; Chittrakarn, T.; Techato, K.; Khongnakorn, W. J. Modification of Surface α-Fe2O3/TiO2 Photocatalyst Nanocomposite with Enhanced Photocatalytic Activity by Ar Gas Plasma Treatment for Hydrogen Evolution. Environmental Chemical Engineering 2021, 9, 105660.
(51) Ma, D.; Shi, J. W.; Sun, D.; Zou, Y.; Cheng, L.; He, C.; Wang, H.; Niu, C.; Wang, L. Au Decorated Hollow ZnO@ZnS Heterostructure for Enhanced Photocatalytic Hydrogen Evolution: The Insight into the Roles of Hollow Channel and Au Nanoparticles. Applied Catalysis B: Environment and Energy 2019, 244, 748–757.
(52) Lv, S.; Du, Y.; Wu, F.; Cai, Y.; Zhou, T. Review on LSPR Assisted Photocatalysis: Effects of Physical Fields and Opportunities in Multifield Decoupling. Nanoscale Advances 2022, 4, 2608–2631.
(53) Li, J.; Xie, G.; Jiang, J.; Liu, Y.; Chen, C.; Li, W.; Huang, J.; Luo, X.; Xu, M.; Zhang, Q.; Yang, M.; Su, Y. Enhancing Photodegradation of Methyl Orange by Coupling Piezo-Phototronic Effect and Localized Surface Plasmon Resonance. Nano Energy 2023, 108, 108234.