研究生: |
張博郁 |
---|---|
論文名稱: |
氧化銦錫奈米線成長與摻雜量對光電特性影響之研究 Effects of Doping Concentration on Photoelectrical Properties and Growth of Tin-Doped Indium Oxide Nanowires |
指導教授: | 林樹均 |
口試委員: |
林樹均
李勝隆 楊智富 張守一 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 97 |
中文關鍵詞: | 氧化銦錫奈米線 、Burstein-Moss效應 、載子濃度 、光學能階 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用VLS機制以熱蒸鍍法在不同的溫度及通以氧氣的情況下合成出氧化銦錫奈米線,在實驗的過程中,藉改變持溫溫度、氧氣的流量及來源粉末比例等變因,來比較所合成出之氧化銦錫奈米線形貌以及性質上的差異,尋找出一個最佳的奈米線製程參數,最後將以此參數合成出的氧化銦錫奈米線作發光特性並比較不同錫摻雜量之間的關係。
以場發射式電子顯微鏡 (FESEM) 分析於適當氧流量下所合成出的奈米線,可觀察到在改變持溫溫度時,會影響到奈米線的外在形貌,溫度愈高時奈米線成長十分迅速,但形貌上極為不佳。X光粉末繞射儀 (XRD) 及穿透式電子顯微鏡 (TEM) 確認奈米線的結構為單晶的cubic bixybyite結構,不會因為持溫溫度及粉末比例等各項因素的改變而改變,成分分析利用X光光電子能譜儀 (XPS) 和奈米級歐傑電子能譜儀,奈米線的銦錫比例確實是會隨著來源粉末的不同而改變,此外,奈米線銦錫比例的不同也會影響到發光性質,在光致發光 (PL) 光譜圖和紫外光可見光 (UV-Vis) 光譜圖可以發現隨著摻雜錫原子的比例增加,其發光波段會往短波段的方向偏移,即藍移現象。
經由紫外光可見光光譜圖和Tauc關係式求出氧化銦錫奈米線的光學能階,發現光學能階隨錫摻雜量增加而增加。錫摻雜比例的增加,使得奈米線中的載子濃度提升,根據Burstein-Moss理論,由於載子濃度的增加,會造成電子會填滿導帶底部的低能區,使得能階增加,最後再藉由Burstein-Moss偏移公式可算出載子濃度。
[1] M. Law, L. E. Greene, J. C. Johnson, R. Saykally, and P. Yang, "Nanowire dye-sensitized solar cells," Nat Mater, vol. 4, pp. 455-459, 2005.
[2] E. Comini and G. Sberveglieri, "Metal oxide nanowires as chemical sensors," Materials Today, vol. 13, pp. 36-44.
[3] X. Y. Xue, Y. J. Chen, Y. G. Liu, S. L. Shi, Y. G. Wang, and T. H. Wang, "Synthesis and ethanol sensing properties of indium-doped tin oxide nanowires," Applied Physics Letters, vol. 88, pp. 201907-3, 2006.
[4] S.-P. Chang, S.-J. Chang, C.-Y. Lu, M.-J. Li, C.-L. Hsu, Y.-Z. Chiou, T.-J. Hsueh, and I. C. Chen, "A ZnO nanowire-based humidity sensor," Superlattices and Microstructures, vol. 47, pp. 772-778, 2010.
[5] M. S. Arnold, P. Avouris, Z. W. Pan, and Z. L. Wang, "Field-effect transistors based on single semiconducting oxide nanobelts," Journal of Physical Chemistry B, vol. 107, pp. 659-663, Jan 2003.
[6] H. H. Park, P. S. Kang, G. T. Kim, and J. S. Ha, "Effect of gate dielectrics on the device performance of SnO[sub 2] nanowire field effect transistors," Applied Physics Letters, vol. 96, pp. 102908-3, 2010.
[7] 洪文進,許登貴,萬明安," ITO 透明導電薄膜:從發展與應用到製備與分析," Journal of the Chinese Chemical Society vol. 63, p. 10, 2005.
[8] M. C. McAlpine, H. Ahmad, D. Wang, and J. R. Heath, "Highly ordered nanowire arrays on plastic substrates for ultrasensitive flexible chemical sensors," Nat Mater, vol. 6, pp. 379-384, 2007.
[9] S. P. Arnold, S. M. Prokes, F. K. Perkins, and M. E. Zaghloul, "Design and performance of a simple, room-temperature Ga2O3 nanowire gas sensor," Applied Physics Letters, vol. 95, Sep 2009.
[10] C. Y. Lu, S. P. Chang, S. J. Chang, T. J. Hsueh, C. L. Hsu, Y. Z. Chiou, and C. Chen, "ZnO nanowire-based oxygen gas sensor," Ieee Sensors Journal, vol. 9, pp. 485-489, Apr 2009.
[11] C. Li, D. Zhang, S. Han, X. Liu, T. Tang, B. Lei, Z. Liu, and C. Zhou, "Synthesis, electronic properties, and applications of indium oxide nanowires," in Molecular Electronics Iii. vol. 1006, J. R. Reimers, et al., Eds., ed, 2003, pp. 104-121.
[12] D. Zhang, C. Li, S. Han, X. Liu, T. Tang, W. Jin, and C. Zhou, "Ultraviolet photodetection properties of indium oxide nanowires," Applied Physics A: Materials Science & Processing, vol. 77, p. 163, 2003.
[13] J. Kong, N. R. Franklin, C. W. Zhou, M. G. Chapline, S. Peng, K. J. Cho, and H. J. Dai, "Nanotube molecular wires as chemical sensors," Science, vol. 287, pp. 622-625, Jan 2000.
[14] S. S. Fan, M. G. Chapline, N. R. Franklin, T. W. Tombler, A. M. Cassell, and H. J. Dai, "Self-oriented regular arrays of carbon nanotubes and their field emission properties," Science, vol. 283, pp. 512-514, Jan 1999.
[15] W. A. Deheer, A. Chatelain, and D. Ugarte, "A carbon nanotube field-emission electron source," Science, vol. 270, pp. 1179-1180, Nov 1995.
[16] S. J. Tans, A. R. M. Verschueren, and C. Dekker, "Room-temperature transistor based on a single carbon nanotube," Nature, vol. 393, pp. 49-52, May 1998.
[17] R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, "Carbon nanotubes - the route toward applications," Science, vol. 297, pp. 787-792, Aug 2002.
[18] L. Vayssieres, "Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions," Advanced Materials, vol. 15, pp. 464-466, Mar 2003.
[19] W. I. Park and G. C. Yi, "Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN," Advanced Materials, vol. 16, pp. 87, Jan 2004.
[20] Y. Cui, Q. Q. Wei, H. K. Park, and C. M. Lieber, "Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species," Science, vol. 293, pp. 1289-1292, Aug 2001.
[21] M. Zhang, Z. Wang, G. Xi, D. Ma, R. Zhang, and Y. Qian, "Large-scale synthesis of antimony nanobelt bundles," Journal of Crystal Growth, vol. 268, pp. 215-221, 2004.
[22] M. Li, L. J. Qiao, W. Y. Chu, and A. A. Volinsky, "Water pre-adsorption effect on room temperature SnO2 nanobelt ethanol sensitivity in oxygen-deficient conditions," Sensors and Actuators B: Chemical, vol. In Press, Accepted Manuscript.
[23] M. H. Huang, S. Mao, H. Feick, H. Q. Yan, Y. Y. Wu, H. Kind, E. Weber, R. Russo, and P. D. Yang, "Room-temperature ultraviolet nanowire nanolasers," Science, vol. 292, pp. 1897-1899, Jun 2001.
[24] X. F. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, "Single-nanowire electrically driven lasers," Nature, vol. 421, pp. 241-245, Jan 2003.
[25] Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, "Logic gates and computation from assembled nanowire building blocks," Science, vol. 294, pp. 1313-1317, Nov 2001.
[26] Z. Y. Fan, D. W. Wang, P. C. Chang, W. Y. Tseng, and J. G. Lu, "ZnO nanowire field-effect transistor and oxygen sensing property," Applied Physics Letters, vol. 85, pp. 5923-5925, Dec 2004.
[27] C. O'Dwyer, M. Szachowicz, G. Visimberga, V. Lavayen, S. B. Newcomb, and C. M. S. Torres, "Bottom-up growth of fully transparent contact layers of indium tin oxide nanowires for light-emitting devices," Nat Nano, vol. 4, pp. 239-244, 2009.
[28] X. D. Wang, J. Zhou, J. H. Song, J. Liu, N. S. Xu, and Z. L. Wang, "Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire," Nano Letters, vol. 6, pp. 2768-2772, Dec 2006.
[29] B. Gates, Y. Wu, Y. Yin, P. Yang, and Y. Xia, "Single-crystalline nanowires of Ag2Se can be synthesized by templating against nanowires of trigonal Se," Journal of the American Chemical Society, vol. 123, pp. 11500-11501, 2001.
[30] C. G. Wu and T. Bein, "Conducting carbon wires in ordered, nanometer-sized channels," Science, vol. 266, pp. 1013-1015, November 11, 1994 1994.
[31] C. R. Martin, "Nanomaterials: a membrane-based synthetic approach," Science, vol. 266, pp. 1961-1966, December 23, 1994 1994.
[32] B. Gates, Y. Yin, and Y. Xia, "A solution-phase approach to the synthesis of uniform nanowires of crystalline selenium with lateral dimensions in the range of 10−30 nm," Journal of the American Chemical Society, vol. 122, pp. 12582-12583, 2000.
[33] S. T. Lee, N. Wang, and C. S. Lee, "Semiconductor nanowires: synthesis, structure and properties," Materials Science and Engineering A, vol. 286, pp. 16-23, 2000.
[34] N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, I. Bello, and S. T. Lee, "Si nanowires grown from silicon oxide," Chemical Physics Letters, vol. 299, pp. 237-242, 1999.
[35] X. S. Peng, G. W. Meng, X. F. Wang, Y. W. Wang, J. Zhang, X. Liu, and L. D. Zhang, "Synthesis of oxygen-deficient indium-tin-oxide (ITO) nanofibers," Chemistry of Materials, vol. 14, pp. 4490-4493, Nov 2002.
[36] S. Y. Lee, C. Y. Lee, P. Lin, and T. Y. Tseng, "Low temperature synthesized Sn doped indium oxide nanowires," Nanotechnology, vol. 16, p. 451, 2005.
[37] Q. Wan, M. Wei, D. Zhi, J. L. MacManus-Driscoll, and M. G. Blamire, "Epitaxial growth of vertically aligned and branched single-crystalline tin-doped indium oxide nanowire arrays," Advanced Materials, vol. 18, pp. 234-+, 2006.
[38] J. Gao, R. Chen, D. H. Li, L. Jiang, J. C. Ye, X. C. Ma, X. D. Chen, Q. H. Xiong, H. D. Sun, and T. Wu, "UV light emitting transparent conducting tin-doped indium oxide (ITO) nanowires," Nanotechnology, vol. 22, p. 195706, 2011.
[39] G. W. Sears, "A growth mechanism for mercury whiskers," Acta Metallurgica, vol. 3, pp. 361-366, 1955.
[40] Z. W. Pan, Z. R. Dai, and Z. L. Wang, "Nanobelts of Semiconducting Oxides," Science, vol. 291, pp. 1947-1949, March 9, 2001 2001.
[41] R. S. Wagner and W. C. Ellis, "Vapor-liquid-solid mechanism of single crystal growth," Applied Physics Letters, vol. 4, pp. 89-90, 1964.
[42] R. S. Wagner, W. C. Ellis, K. A. Jackson, and S. M. Arnold, "Study of the filamentary growth of silicon crystals from the vapor," J. Appl. Phys., vol. 35, pp. 2993-3000, 1964.
[43] Y. Wu and P. Yang, "Direct observation of vapor-liquid-solid nanowire growth," Journal of the American Chemical Society, vol. 123, pp. 3165-3166, 2001.
[44] K. S. Park, Y. J. Choi, J. G. Kang, Y. M. Sung, and J. G. Park, "The effect of the concentration and oxidation state of Sn on the structural and electrical properties of indium tin oxide nanowires," Nanotechnology, vol. 22, p. 285712, 2011.
[45] Q. Wan, Z. T. Song, S. L. Feng, and T. H. Wang, "Single-crystalline tin-doped indium oxide whiskers: Synthesis and characterization," Applied Physics Letters, vol. 85, pp. 4759-4761, 2004.
[46] Y. Q. Chen, J. Jiang, and J. G. Hou, "Synthesis of tin-doped indium oxide nanowires by self-catalytic VLS growth," Journal of Physics D: Applied Physics, vol. 37, p. 3319, 2004.
[47] H. S. Jang, D. H. Kim, H. R. Lee, and S. Y. Lee, "Field emission from cone-like single crystalline indium tin oxide nanorods," Materials Letters, vol. 59, pp. 1526-1529, May 2005.
[48] M. O. Orlandi, R. Aguiar, A. J. C. Lanfredi, E. Longo, J. A. Varela, and E. R. Leite, "Tin-doped indium oxide nanobelts grown by carbothermal reduction method," Applied Physics A: Materials Science & Processing, vol. 80, pp. 23-25, 2005.
[49] Q. Wan, P. Feng, and T. H. Wang, "Vertically aligned tin-doped indium oxide nanowire arrays: Epitaxial growth and electron field emission properties," Applied Physics Letters, vol. 89, Sep 2006.
[50] S. P. Chiu, H. F. Chung, Y. H. Lin, J. J. Kai, F. R. Chen, and J. J. Lin, "Four-probe electrical-transport measurements on single indium tin oxide nanowires between 1.5 and 300 K," Nanotechnology, vol. 20, p. 105203, 2009.
[51] H. Kim, S. Park, C. Jin, and C. Lee, "Enhanced Photoluminescence in Au-Embedded ITO Nanowires," ACS Applied Materials & Interfaces, vol. 3, pp. 4677-4681, 2011/12/28 2011.
[52] http://chem5.nchc.org.tw/icsd/.
[53] H. Binczycka, M. Uhrmacher, M. L. Elidrissi-Moubtassim, J. C. Jumas, and P. Schaaf, "Hyperfine interactions and site occupancy in Sn-doped In2O3 (ITO)," physica status solidi (b), vol. 242, pp. 1100-1107, 2005.
[54] H. S. Jang, D.-H. Kim, H.-R. Lee, and S.-Y. Lee, "Field emission from cone-like single crystalline indium tin oxide nanorods," Materials Letters, vol. 59, pp. 1526-1529, 2005.
[55] L. Gupta, A. Mansingh, and P. K. Srivastava, "Band gap narrowing and the band structure of tin-doped indium oxide films," Thin Solid Films, vol. 176, pp. 33-44, 1989.
[56] Z. P. Wei, D. L. Guo, B. Liu, R. Chen, L. M. Wong, W. F. Yang, S. J. Wang, H. D. Sun, and T. Wu, "Ultraviolet light emission and excitonic fine structures in ultrathin single-crystalline indium oxide nanowires," Applied Physics Letters, vol. 96, pp. 031902-3, 2010.
[57] L.-W. Chang, Y.-C. Sung, J.-W. Yeh, and H. C. Shih, "Enhanced optoelectronic performance from the Ti-doped ZnO nanowires," Journal of Applied Physics, vol. 109, pp. 074318-7, 2011.
[58] R. B. H. Tahar, T. Ban, Y. Ohya, and Y. Takahashi, "Tin doped indium oxide thin films: Electrical properties," J. Appl. Phys., vol. 83, pp. 2631-2645, 1998.
[59] 郭浩中,賴芳儀,郭守義,LED原理與應用,2009.
[60] Q. Wan, E. N. Dattoli, W. Y. Fung, W. Guo, Y. Chen, X. Pan, and W. Lu, "High-performance transparent conducting oxide nanowires," Nano Letters, vol. 6, pp. 2909-2915, 2006.
[61] O. M. Berengue, A. J. Chiquito, L. P. Pozzi, A. J. C. Lanfredi, and E. R. Leite, "Electron–phonon scattering in Sn-doped In2O3 FET nanowires probed by temperature-dependent measurements," Nanotechnology, vol. 20, p. 245706, 2009.
[62] S. Xu and Y. Shi, "Low temperature high sensor response nano gas sensor using ITO nanofibers," Sensors and Actuators B: Chemical, vol. 143, pp. 71-75, 2009.
[63] H. W. Wang, C. F.Ting, M. K. Hung, C. H. Chiou, Y. L. Liu, Z. w. Liu, K. R. Ratinac, and S. P. Ringer, "Three-dimensional electrodes for dye-sensitized solar cells: synthesis of indium–tin-oxide nanowire arrays and ITO/TiO2 core–shell nanowire arrays by electrophoretic deposition," Nanotechnology, vol. 20, p. 055601, 2009.
[64] 鄭一民,"磷砷化銦鎵化合物半導體之光學特性研究," 碩士論文,應用物理研究所,私立中原大學,桃園, 2001.
[65] 謝嘉民,賴一凡,林永昌,枋志堯,"光激發螢光量測的原理、架構及應用,科儀新知," pp. 39-51, 2005.
[66] 李佩蓉,"氧化銦錫奈米線之電子場發射性質及導電性質研究," 碩士論文,材料科學工程研究所,國立清華大學,新竹,2011.
[67] http://www.mse.nthu.edu.tw/about/property_om.php?Sn=30.
[68] http://www.nscric.nthu.edu.tw/EM/aemeds/aemeds.html.
[69] http://www.nscric.nthu.edu.tw/Other/nano-Auger/auesca.html.
[70] http://www.nscric.nthu.edu.tw/Other/augeresca/auesca.html.
[71] C. B. Alcock, Itkin, V. P., and Horrigan, M. K., "Canadian Metallurqical Quarterly," pp. 309 -315, 1984.
[72] 許家瑋,"以化學氣相法製備氧化銦一維奈米線," 碩士論文,材料科學工程研究所,國立東華大學,花蓮,2007.
[73] G. B. Gonzalez, J. B. Cohen, J.-H. Hwang, T. O. Mason, J. P. Hodges, and J. D. Jorgensen, "Neutron diffraction study on the defect structure of indium--tin--oxide," Journal of Applied Physics, vol. 89, pp. 2550-2555, 2001.
[74] G. Neri, A. Bonavita, G. Micali, G. Rizzo, N. Pinna, M. Niederberger, and J. Ba, "A study on the microstructure and gas sensing properties of ITO nanocrystals," Thin Solid Films, vol. 515, pp. 8637-8640, 2007.
[75] K. P. Kalyanikutty, G. Gundiah, C. Edem, A. Govindaraj, and C. N. R. Rao, "Doped and undoped ITO nanowires," Chemical Physics Letters, vol. 408, pp. 389-394, 2005.
[76] W.-F. Wu and B.-S. Chiou, "Effect of oxygen concentration in the sputtering ambient on the microstructure, electrical and optical properties of radio-frequency magnetron-sputtered indium tin oxide films," Semiconductor Science and Technology, vol. 11, p. 196, 1996.
[77] X. S. Peng, G. W. Meng, X. F. Wang, Y. W. Wang, J. Zhang, X. Liu, and L. D. Zhang, "Synthesis of Oxygen-Deficient Indium−Tin-Oxide (ITO) Nanofibers," Chemistry of Materials, vol. 14, pp. 4490-4493, 2002/11/01 2002.
[78] W. Song, S. K. So, and L. Cao, "Angular-dependent photoemission studies of indium tin oxide surfaces," Applied Physics A: Materials Science & Processing, vol. 72, pp. 361-365, 2001.
[79] P. Nguyen, S. Vaddiraju, and M. Meyyappan, "Indium and tin oxide nanowires by vapor-liquid-solid growth technique," Journal of Electronic Materials, vol. 35, pp. 200-206, 2006.
[80] D. Maestre, A. Cremades, J. Piqueras, and L. Gregoratti, "Thermal growth and structural and optical characterization of indium tin oxide nanopyramids, nanoislands, and tubes," Journal of Applied Physics, vol. 103, pp. 093531-093531-6, 2008.
[81] D. Yu, D. Wang, W. Yu, and Y. Qian, "Synthesis of ITO nanowires and nanorods with corundum structure by a co-precipitation-anneal method," Materials Letters, vol. 58, pp. 84-87, 2004.
[82] Y. Zhu and Y. Chen, "Sn-doped polyhedral In2O3 particles: Synthesis, characterization, and origins of luminous emission in wide visible range," Journal of Solid State Chemistry, vol. 186, pp. 182-188, 2012.
[83] K. C. Lo, H. P. Ho, K. Y. Fu, and P. K. Chu, "Synthesis of indium oxide nanorods on indium phosphide substrate using plasma immersion ion implantation," Surface and Coatings Technology, vol. 201, pp. 6816-6818, 2007.
[84] J. S. Jeong, J. Y. Lee, C. J. Lee, S. J. An, and G. C. Yi, "Synthesis and characterization of high-quality In2O3 nanobelts via catalyst-free growth using a simple physical vapor deposition at low temperature," Chemical Physics Letters, vol. 384, pp. 246-250, 2004.
[85] H. Cao, X. Qiu, Y. Liang, Q. Zhu, and M. Zhao, "Room-temperature ultraviolet-emitting In2O3 nanowires," Applied Physics Letters, vol. 83, pp. 761-763, 2003.
[86] J. Tauc, R. Grigorovici, and A. Vancu, "Optical Properties and Electronic Structure of Amorphous Germanium," physica status solidi (b), vol. 15, pp. 627-637, 1966.
[87] R. L. Weiher and R. P. Ley, "Optical Properties of Indium Oxide," Journal of Applied Physics, vol. 37, pp. 299-302, 1966.
[88] E. Burstein, "Anomalous Optical Absorption Limit in InSb," Physical Review, vol. 93, pp. 632-633, 1954.
[89] I. Hamberg and C. G. Granqvist, "Evaporated Sn‐doped In2O3 films: Basic optical properties and applications to energy‐efficient windows," Journal of Applied Physics, vol. 60, pp. R123-R160, 1986.
[90] G. Jo, W.-K. Hong, J. Maeng, T.-W. Kim, G. Wang, A. Yoon, S.-S. Kwon, S. Song, and T. Lee, "Structural and electrical characterization of intrinsic n-type In2O3 nanowires," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 313–314, pp. 308-311, 2008.
[91] S. A. Agnihotry, K. K. Saini, T. K. Saxena, K. C. Nagpal, and S. Chandra, "Studies on e-beam deposited transparent conductive films of In 2 O 3 :Sn at moderate substrate temperatures," Journal of Physics D: Applied Physics, vol. 18, p. 2087, 1985.
[92] C. Coutal, A. Azéma, and J. C. Roustan, "Fabrication and characterization of ITO thin films deposited by excimer laser evaporation," Thin Solid Films, vol. 288, pp. 248-253, 1996.