研究生: |
李冠賢 |
---|---|
論文名稱: |
單晶矽熱致動壓阻感測式微機械震盪器研製 SOI Thermal-piezoresistive Self-sustained Micromechanical Oscillators |
指導教授: | 李昇憲 |
口試委員: |
方維倫
陳宗麟 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 89 |
中文關鍵詞: | 高Q值 、熱致動壓阻感測 、SOI 、振盪器 、低功率 、相位雜訊 |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文是利用N-type低阻值SOI晶圓來實現熱致動壓阻感測之自我維持微機械振盪器,其最大特色在於不需使用主動電路,僅利用純物理式正迴授機制實現微機電元件之自我振盪,未來將提供時脈與感測之功能。我們分別在真中與空氣中都量測到共振器元件的頻率響應與振盪器元件的相位雜訊,其在真空中Q值最大可達到14,000,在空氣中也有3,000的優異表現,而振盪時最低的等效運動阻抗(R_(m_n ))為600Ω。若作為質量感測器使用,我們利用量測之相位雜訊轉換為Allan Deviation計算其質量感測性能,最低可得到小於1 femtogram的質量解析能力。
熱致動壓阻感測的運作原理,其主要為使用電源供應器給予一直流電源使致動器端產生電熱效應用以推動質量塊,並讓結構運動在共振頻上,使運動可以放大Q倍而得到位移最大值。在輸入適當的直流電流伴隨雜訊下可使元件開始發生熱、機、電耦合的交互循環運動,並使結構開始發生振盪,再藉由壓阻效應產生輸出電訊號。
在元件設計上,我們必須使用負的壓阻係數搭配良好的結構導電性,單晶矽材料是選用(100)方向來獲得最大壓阻系數;我們利用不同結構的設計來弭補製程上的限制,使直流電流給予的量值能夠更為彈性;在製程上僅運用兩片光罩與乾、濕蝕刻即可達成次微米的結構,並且可以再藉由二氧化矽當作Hard mask縮小致動器寬度來增進元件的性能,使直流的驅動功率可以降低至數十W的等級。
本研究在量測特性的表現,在真空中最低的操作直流功耗為70W,此為目前熱致動壓阻感測MEMS振盪器功率消耗的最低紀錄;相位雜訊在1kHz與100kHz分別有-110.06 dBc/Hz和-116.84 dBc/Hz表現,其振盪位移和頻率溫度係數(〖TC〗_f)的量測結果皆會進行詳細的介紹。
[1] T. S. J. Lammerink, M. Elwenspoek, and J. H. J. Fluitman, “Optical excitation of micro-mechanical resonators,” in IEEE Micro Electro Mechanical Systems(MEMS), pp. 160 -165, 1991.
[2] R. B. Reichenbach, M. K. Zalalutdinov, K. L. Aubin, D. A. Zaplewski, B. Ilic, B. H. Houston, H. G. Craighead, and J. M. Parpia, “Resistively actuated micromechanical dome resonators,” Proceedings of SPIE, pp. 51-58, 2004.
[3] S. J. Hyeong, and O. Brand, “High-Q-factor in-plane-mode resonant microsensor platform for gaseous/liquid environment,” in IEEE Journal of Microelectromechanical Systems, vol. 17, pp. 483-493, 2008.
[4] A. Rahafrooz, A. Hajjam, and S. Pourkamali, “Rotational mode disk resonators for high-Q operation in liquid,” in IEEE Sensors, pp. 1071-1074, Nov. 01, 2010.
[5] A. Rahafrooz, A. Hajjam, and S. Pourkamali, “Thermal actuation of high frequency micromechanical resonators,” in IEEE SOI conference, pp. 1-2, 2009.
[6] A. Rahafrooz, A. Hajjam, B. Tousifar, and S. Pourkamali, “Thermal actuation, a suitable mechanism for high frequency electromechanical resonators,” in 23rd IEEE International Conference on Micro Electro Mechanical Systems (MEMS), pp. 200-203, 2010.
[7] A. Hajjam, A. Rahafrooz, and S. Pourkamali, “Sub-100ppb/℃ temperature stability in thermally actuated high frequency silicon resonators via degenerate phosphorous doping and bias current optimization,” in IEEE Tech. Dig. International Electron Devices Meeting (IEDM), pp. 7.5.1-7.5.4, 2010.
[8] A. Rahafrooz and S. Pourkamali, “Active self-Q-enhancement in high frequency thermally actuated M/NEMS resonators,” in IEEE 24th International Conference on Micro Electro Mechanical Systems (MEMS), pp. 760-763, 2011.
[9] A. Hajjam and S. Pourkamali, “Fabrication and Characterization of MEMS-Based Resonant Organic Gas Sensors, ” in IEEE Sensors Journal, vol. 12 , Issue 6 , pp. 1958 - 1964, 2012.
[10] Z. Xiong, E. Mairiaux, B. Walter, M. Faucher, L. Buchaillot, and B. Legrand, “5.4 MHz dog-bone oscillating AFM probe with thermal actuation and piezoresistive detection,” in 26th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), , pp. 592 -595, 2013.
[11] K. Udeshi, and Y.B. Gianchandani, “A DC-powered, tunable, fully mechanical oscillator using in-plane electrothermal actuation,” in 17th IEEE International Conference on Micro Electro Mechanical Systems(MEMS), pp. 502 - 505, 2004.
[12] P. G. Steeneken, K. Le Phan, M. J. Goossens, G. E. J. Koops, G. J. A. M. Brom, C. van der Avoort and J. T. M. van Beek, “Piezoresistive heat engine and refrigerator,” Nature Physic, vol. 7, pp. 354-359, 2011.
[13] A. Rahafrooz and S. Pourkamali, “Fully micromechanical piezo-thermal oscillators,” in IEEE Tech. Dig. International Electron Devices Meeting (IEDM), pp. 7.2.1-7.2.4, 2010.
[14] K. Nakamura, Y. Isono, T. Toriyama and S. Sugiyama, “ Simulation of piezoresistivity in n-type single-crystal silicon on the basis of the first-principles band structure,” APS, Phys. Rev. B, vol 80, Issue 4, pp. 11, 2009.
[15] M.-H. Li, et al., “Foundry-CMOS integrated oscillator circuits based on ultra-low power ovenized CMOS-MEMS resonators” in IEEE Tech. Dig. International Electron Devices Meeting (IEDM), pp. 18.4.1- 18.4.4, 2013.
[16] Y. H. Chiang, et al., “A submicrowatt 1.1-MHz CMOS relaxation oscillator with temperature compensation” TCSII. Syst., vol. 60, pp. 831-841, 2013.
[17] J. M. Kim, et al., “A low-noise four-stage voltage-controlled ring oscillator in deep-submicrometer CMOS technology,” TCSII. Syst., vol. 60, pp.71-75, 2013.
[18] X. Xia, P. Zhou, X. Li, “Effect of resonance-mode order on mass-sensing resolution of microcantilever sensors” in IEEE Sensors conference, pp. 1958 - 1964, 2008.
[19] H. S. Wasisto, S. Merzsch, A. Stranz, A. Waag, E. Uhde, I. Kirsch, T. Salthammer, and E. Peiner “Use of self-sensing piezoresistive Si cantilever sensor for determining carbon nanoparticles mass” Proc. of SPIE Smart Sensors, Actuators, and MEMS V, Vol. 806623, 2011.