簡易檢索 / 詳目顯示

研究生: 林均璞
Lin, Chun-Pu
論文名稱: 組蛋白去甲基酵素KDM8於常氧及缺氧環境下對乳癌細胞增生調控機制之研究
KDM8, an H3K36me2 Histone Demethylase, Regulates Normoxia and Hypoxia Mediated Breast Cancer Cell Proliferation
指導教授: 王雯靜
Wang, Wen-Ching
口試委員: 王雯靜
Wang, Wen-Ching
林立元
Lin, Lih-Yuan
楊嘉鈴
Yang, J. L.
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子與細胞生物研究所
Institute of Molecular and Cellular Biology
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 74
中文關鍵詞: 組蛋白去甲基酵素缺氧環境乳癌細胞細胞增生
外文關鍵詞: Histone demethylases, Hypoxia, Breast cancer cells, Cell proliferation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過去對於基因調控的研究發現,組蛋白甲基化/去甲基化 (histone methylation/demethylation) 會導致染色質絲的結構發生改變,屬於一種基因鹼基序列以外的遺傳性變化。此種轉譯後修飾 (post-translational modifications) 在調控基因的表現上扮演了很重要的角色。然而近年來發現,異常的轉錄後修飾會影響生物的生理運作,並導致細胞癌化。KDM8是一種具有JmjC domain的組蛋白去甲基酶,可以針對組蛋白H3尾端接了兩個甲基的第36個lysine residue (H3K36me2) 進行去除甲基的反應,並且被發現可調控胚胎發育、破骨細胞生成,以及細胞增生。由於近期發現KDM8在乳癌細胞中具有高度的表現,並可促進癌細胞的生長,因此異常的KDM8表現目前被認為是導致乳癌發生的可能原因之一。腫瘤發育的過程中,迅速增殖的癌細胞會使周圍形成一種缺氧的環境,並且引發低氧誘導因子1α (HIF-1α) 的表現。由我們先前的實驗發現, KDM8的表現量會因缺氧的刺激而上升,並且可和HIF-1α結合。此外,抑制KDM8可阻止乳癌細胞的轉移。因此本研究之主要目的在於探討KDM8對於缺氧環境引發的乳癌細胞增生及癌細胞轉移機制的調控。實驗結果發現乳癌細胞的增情形生不僅因KDM8的表現受抑制而減緩,且在KDM8的缺乏在缺氧環境下對抑制乳癌細胞生長具有明顯的效果。經由進一步的實驗證實,抑制KDM8會導致周期素 (cyclin)、細胞週期蛋白依賴型激酶 (cyclin-dependent kinase, CDK) 以及細胞週期抑制蛋白 (p21, p27) 等許多細胞週期調控因子的表現量發生改變,進而將細胞滯留在細胞週期的G1及G2週期。本研究也發現缺氧所引發的c-Myc及p53活性增加現象會因KDM8的表現量下降而被抑制,並且許多促進癌細胞轉移因子的表現量也因KDM8受到抑制而下降。上述受到調控的基因中,有許多過去都曾被證明為Wnt 訊號通路(Wnt signaling)的下游調控基因。因此,由上述結果推測,KDM8可能藉由調控Wnt的訊號傳遞路徑,進而影響乳癌細胞之增生及轉移機制。


    Methylation/demethylation of histone tail, one of the major post-translational modifications (PTMs) in chromatin, plays an important role in chromatin remodeling to regulate gene expression. Dysregulation of these processes links to carcinogenesis. KDM8 (Jmjd5), an H3K36me2 histone demethylase containing jmjC domain, is crucial to regulate embryonic development, osteoclastogenesis and cell proliferation. Along with its general over expression in breast cancer, KDM8 is suggested to play a role in carcinogenesis. Swiftly proliferating cancer cells that encounter intermittent hypoxia trigger the expression of a master regulator, Hypoxia-inducible factor (HIF). We have previously found that KDM8 interacted with HIF1-α and was up-regulated under hypoxia (by Dr. Hung-Jung Wang). Moreover, knockdown KDM8 inhibited breast cancer cell metastasis (by So-Fang Yang). In this study, we aim to address the mechanism in which KDM8 is involved in cell proliferation under hypoxia, as well as tumor metastasis. A significantly reduced level of cell proliferation was found in KDM8 knockdown cells, especially when these cells were cultured under hypoxia. Knockdown cells were arrested in both G1/S and G2/M phases. Several cell cycle transition regulatory proteins including cyclins, cyclin-dependent kinases (CDKs), and cyclin-CDK complex inhibitors were affected accordingly. Moreover, KDM8 knockdown cells significantly lost hypoxia-induced c-Myc and p53 transactivation activity. And several epithelial mesenchymal transition inducers which belong to downstream targets of canonical Wnt signaling exhibited a lower level of expression, suggesting a link to hypoxia-induced Wnt signaling pathway.

    中文摘要 i Abstract ii Contents iii List of Tables v List of Figures vi Chapter 1. Introduction 1 1.1 Post-translational modifications and cancer 1 1.2 Histone modifications and histone demethylases 1 1.3 KDM8 and breast cancer 3 1.4 Carcinogenesis 3 1.5 Cell cycle regulation and carcinogenesis 3 1.6 EMT and carcinogenesis 4 1.7 Wnt signaling and cell proliferation 5 1.8 Hypoxia and carcinogenesis 5 1.9 Crosstalk between EMT and Wnt signaling under hypoxic condition 7 1.10 Specific Aim 7 Chapter 2. Materials and Methods 10 2.1 Cell lines and cell culture 10 2.2 KDM8 knockdown stable cell lines generation 10 2.2.1 Lentivirus production 11 2.2.2 Lentivirus transduction and selection for KDM8 knockdown cell lines 11 2.3 Hypoxia treatment 12 2.4 Cell number counting for growth curve analysis 12 2.5 PI staining and flow cytometry for cell cycle S phase analysis 13 2.6 BrdU cell proliferation flow cytometry 13 2.7 BrdU cell proliferation ELISA 14 2.8 Protein extraction and Western blot analysis 15 2.8.1 Protein extraction 15 2.8.2 Western blotting 16 2.9 RNA isolation and quantitative real-time PCR 17 2.9.1 RNA isolation 17 2.9.2 cDNA synthesis 17 2.9.3 Quantitative Real-Time PCR 18 2.10 Cell transfection for luciferase reporter assay 18 2.11 Luciferase reporter assay 19 2.12 Immunofluorescence assay for mitotic index analysis 21 2.13 Statistical analysis 21 Chapter 3. Results 23 3.1 KDM8 was stably knockdown by shRNA lentiviral transduction 23 3.2 KDM8-knockdown cells exhibit a greatly reduced rate of cell proliferation, particularly under hypoxic condition 23 3.3 KDM8 is crucial for regulating cell cycle check point transition in both MCF-7 and MDA-MB-231 cells 24 3.4 KDM8-knockdown cells reduce the rate of DNA replication 26 3.5 KDM8-knockdown influences the expression of cell cycle regulatory proteins controlling G1/S and G2/M transition 27 3.6 KDM8 positively influences c-Myc and p53 transactivation activity 28 3.7 KDM8-knockdown inhibits the expression of many EMT and cell proliferation inducing genes 29 Chapter 4. Discussion 31 References 39

    Amati, B., Brooks, M.W., Levy, N., Littlewood, T.D., Evan, G.I., and Land, H. (1993). Oncogenic activity of the c-Myc protein requires dimerization with Max. Cell 72, 233-245.
    Baccarelli, A., and Bollati, V. (2009). Epigenetics and environmental chemicals. Current opinion in pediatrics 21, 243-251.
    Bannister, A.J., and Kouzarides, T. (2011). Regulation of chromatin by histone modifications. Cell research 21, 381-395.
    Bannister, A.J., Schneider, R., and Kouzarides, T. (2002). Histone methylation: dynamic or static? Cell 109, 801-806.
    Blackwood, E.M., and Eisenman, R.N. (1992). Regulation of Myc: Max complex formation and its potential role in cell proliferation. The Tohoku journal of experimental medicine 168, 195-202.
    Blackwood, E.M., Luscher, B., Kretzner, L., and Eisenman, R.N. (1991). The Myc:Max protein complex and cell growth regulation. Cold Spring Harbor symposia on quantitative biology 56, 109-117.
    Bracken, C.P., Whitelaw, M.L., and Peet, D.J. (2003). The hypoxia-inducible factors: key transcriptional regulators of hypoxic responses. Cellular and molecular life sciences : CMLS 60, 1376-1393.
    Carmeliet, P., Dor, Y., Herbert, J.M., Fukumura, D., Brusselmans, K., Dewerchin, M., Neeman, M., Bono, F., Abramovitch, R., Maxwell, P., et al. (1998). Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394, 485-490.
    Claassen, G.F., and Hann, S.R. (2000). A role for transcriptional repression of p21CIP1 by c-Myc in overcoming transforming growth factor beta -induced cell-cycle arrest. Proceedings of the National Academy of Sciences of the United States of America 97, 9498-9503.
    Coffey, R.J., Jr., Bascom, C.C., Sipes, N.J., Graves-Deal, R., Weissman, B.E., and Moses, H.L. (1988). Selective inhibition of growth-related gene expression in murine keratinocytes by transforming growth factor beta. Molecular and cellular biology 8, 3088-3093.
    el-Deiry, W.S., Tokino, T., Velculescu, V.E., Levy, D.B., Parsons, R., Trent, J.M., Lin, D., Mercer, W.E., Kinzler, K.W., and Vogelstein, B. (1993). WAF1, a potential mediator of p53 tumor suppression. Cell 75, 817-825.
    Folkman, J. (1990). What is the evidence that tumors are angiogenesis dependent? Journal of the National Cancer Institute 82, 4-6.
    Folkman, J., and Shing, Y. (1992). Angiogenesis. The Journal of biological chemistry 267, 10931-10934.
    Gal, A., Sjoblom, T., Fedorova, L., Imreh, S., Beug, H., and Moustakas, A. (2008). Sustained TGF beta exposure suppresses Smad and non-Smad signalling in mammary epithelial cells, leading to EMT and inhibition of growth arrest and apoptosis. Oncogene 27, 1218-1230.
    Gartel, A.L., Ye, X., Goufman, E., Shianov, P., Hay, N., Najmabadi, F., and Tyner, A.L. (2001). Myc represses the p21(WAF1/CIP1) promoter and interacts with Sp1/Sp3. Proceedings of the National Academy of Sciences of the United States of America 98, 4510-4515.
    Goh, A.M., Coffill, C.R., and Lane, D.P. (2011). The role of mutant p53 in human cancer. The Journal of pathology 223, 116-126.
    Golks, A., and Guerini, D. (2008). The O-linked N-acetylglucosamine modification in cellular signalling and the immune system. 'Protein modifications: beyond the usual suspects' review series. EMBO reports 9, 748-753.
    Gordan, J.D., and Simon, M.C. (2007). Hypoxia-inducible factors: central regulators of the tumor phenotype. Current opinion in genetics & development 17, 71-77.
    Gottardi, C.J., Wong, E., and Gumbiner, B.M. (2001). E-cadherin suppresses cellular transformation by inhibiting beta-catenin signaling in an adhesion-independent manner. The Journal of cell biology 153, 1049-1060.
    Gurtner, A., Starace, G., Norelli, G., Piaggio, G., Sacchi, A., and Bossi, G. (2010). Mutant p53-induced up-regulation of mitogen-activated protein kinase kinase 3 contributes to gain of function. The Journal of biological chemistry 285, 14160-14169.
    Hanahan, D., and Weinberg, R.A. (2000). The hallmarks of cancer. Cell 100, 57-70.
    Hardy, K.M., Booth, B.W., Hendrix, M.J., Salomon, D.S., and Strizzi, L. (2010). ErbB/EGF signaling and EMT in mammary development and breast cancer. Journal of mammary gland biology and neoplasia 15, 191-199.
    He, T.C., Sparks, A.B., Rago, C., Hermeking, H., Zawel, L., da Costa, L.T., Morin, P.J., Vogelstein, B., and Kinzler, K.W. (1998). Identification of c-MYC as a target of the APC pathway. Science 281, 1509-1512.
    Hermeking, H., Rago, C., Schuhmacher, M., Li, Q., Barrett, J.F., Obaya, A.J., O'Connell, B.C., Mateyak, M.K., Tam, W., Kohlhuber, F., et al. (2000). Identification of CDK4 as a target of c-MYC. Proceedings of the National Academy of Sciences of the United States of America 97, 2229-2234.
    Heuberger, J., and Birchmeier, W. (2010). Interplay of cadherin-mediated cell adhesion and canonical Wnt signaling. Cold Spring Harbor perspectives in biology 2, a002915.
    Hirata, A., Inada, K., Tsukamoto, T., Sakai, H., Mizoshita, T., Yanai, T., Masegi, T., Goto, H., Inagaki, M., and Tatematsu, M. (2004). Characterization of a monoclonal antibody, HTA28, recognizing a histone H3 phosphorylation site as a useful marker of M-phase cells. The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society 52, 1503-1509.
    Hoffman, M.D., Sniatynski, M.J., and Kast, J. (2008). Current approaches for global post-translational modification discovery and mass spectrometric analysis. Analytica chimica acta 627, 50-61.
    Howe, L.R., Watanabe, O., Leonard, J., and Brown, A.M. (2003). Twist is up-regulated in response to Wnt1 and inhibits mouse mammary cell differentiation. Cancer research 63, 1906-1913.
    Hsia, D.A., Tepper, C.G., Pochampalli, M.R., Hsia, E.Y., Izumiya, C., Huerta, S.B., Wright, M.E., Chen, H.W., Kung, H.J., and Izumiya, Y. (2010). KDM8, a H3K36me2 histone demethylase that acts in the cyclin A1 coding region to regulate cancer cell proliferation. Proceedings of the National Academy of Sciences of the United States of America 107, 9671-9676.
    Ishimura, A., Minehata, K., Terashima, M., Kondoh, G., Hara, T., and Suzuki, T. (2012). Jmjd5, an H3K36me2 histone demethylase, modulates embryonic cell proliferation through the regulation of Cdkn1a expression. Development 139, 749-759.
    Jamora, C., DasGupta, R., Kocieniewski, P., and Fuchs, E. (2003). Links between signal transduction, transcription and adhesion in epithelial bud development. Nature 422, 317-322.
    Janke, C., Rogowski, K., and van Dijk, J. (2008). Polyglutamylation: a fine-regulator of protein function? 'Protein Modifications: beyond the usual suspects' review series. EMBO reports 9, 636-641.
    Jeffrey, P.D., Russo, A.A., Polyak, K., Gibbs, E., Hurwitz, J., Massague, J., and Pavletich, N.P. (1995). Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature 376, 313-320.
    Jenuwein, T., and Allis, C.D. (2001). Translating the histone code. Science 293, 1074-1080.
    Jiang, Y.G., Luo, Y., He, D.L., Li, X., Zhang, L.L., Peng, T., Li, M.C., and Lin, Y.H. (2007). Role of Wnt/beta-catenin signaling pathway in epithelial-mesenchymal transition of human prostate cancer induced by hypoxia-inducible factor-1alpha. International journal of urology : official journal of the Japanese Urological Association 14, 1034-1039.
    Jones, M.A., and Harmer, S. (2011). JMJD5 Functions in concert with TOC1 in the arabidopsis circadian system. Plant signaling & behavior 6, 445-448.
    Kaldis, P., and Pagano, M. (2009). Wnt signaling in mitosis. Developmental cell 17, 749-750.
    Kalluri, R., and Weinberg, R.A. (2009). The basics of epithelial-mesenchymal transition. The Journal of clinical investigation 119, 1420-1428.
    Koong, A.C., Denko, N.C., Hudson, K.M., Schindler, C., Swiersz, L., Koch, C., Evans, S., Ibrahim, H., Le, Q.T., Terris, D.J., et al. (2000). Candidate genes for the hypoxic tumor phenotype. Cancer research 60, 883-887.
    Krueger, K.E., and Srivastava, S. (2006). Posttranslational protein modifications: current implications for cancer detection, prevention, and therapeutics. Molecular & cellular proteomics : MCP 5, 1799-1810.
    Labbe, E., Letamendia, A., and Attisano, L. (2000). Association of Smads with lymphoid enhancer binding factor 1/T cell-specific factor mediates cooperative signaling by the transforming growth factor-beta and wnt pathways. Proceedings of the National Academy of Sciences of the United States of America 97, 8358-8363.
    Latham, J.A., and Dent, S.Y. (2007). Cross-regulation of histone modifications. Nature structural & molecular biology 14, 1017-1024.
    Lavigne, P., Crump, M.P., Gagne, S.M., Hodges, R.S., Kay, C.M., and Sykes, B.D. (1998). Insights into the mechanism of heterodimerization from the 1H-NMR solution structure of the c-Myc-Max heterodimeric leucine zipper. Journal of molecular biology 281, 165-181.
    Li, Q., Kluz, T., Sun, H., and Costa, M. (2009). Mechanisms of c-myc degradation by nickel compounds and hypoxia. PloS one 4, e8531.
    Li, Y., and Ye, D. (2010). Cancer therapy by targeting hypoxia-inducible factor-1. Current cancer drug targets 10, 782-796.
    MacDonald, B.T., Tamai, K., and He, X. (2009). Wnt/beta-catenin signaling: components, mechanisms, and diseases. Developmental cell 17, 9-26.
    Mateyak, M.K., Obaya, A.J., and Sedivy, J.M. (1999). c-Myc regulates cyclin D-Cdk4 and -Cdk6 activity but affects cell cycle progression at multiple independent points. Molecular and cellular biology 19, 4672-4683.
    Mimura, I., Tanaka, T., Wada, Y., Kodama, T., and Nangaku, M. (2011). Pathophysiological response to hypoxia - from the molecular mechanisms of malady to drug discovery: epigenetic regulation of the hypoxic response via hypoxia-inducible factor and histone modifying enzymes. Journal of pharmacological sciences 115, 453-458.
    Moses, H.L., Arteaga, C.L., Alexandrow, M.G., Dagnino, L., Kawabata, M., Pierce, D.F., Jr., and Serra, R. (1994). TGF beta regulation of cell proliferation. Princess Takamatsu symposia 24, 250-263.
    Muller, P.A., and Vousden, K.H. (2013). p53 mutations in cancer. Nature cell biology 15, 2-8.
    Naber, H.P., Drabsch, Y., Snaar-Jagalska, B.E., Ten Dijke, P., and van Laar, T. (2013). Snail and Slug, key regulators of TGF-beta-induced EMT, are sufficient for the induction of single-cell invasion. Biochemical and biophysical research communications 435, 58-63.
    Nakamura, T., Hamada, F., Ishidate, T., Anai, K., Kawahara, K., Toyoshima, K., and Akiyama, T. (1998). Axin, an inhibitor of the Wnt signalling pathway, interacts with beta-catenin, GSK-3beta and APC and reduces the beta-catenin level. Genes to cells : devoted to molecular & cellular mechanisms 3, 395-403.
    Neve, R.M., Chin, K., Fridlyand, J., Yeh, J., Baehner, F.L., Fevr, T., Clark, L., Bayani, N., Coppe, J.P., Tong, F., et al. (2006). A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer cell 10, 515-527.
    Nieto, M.A. (2002). The snail superfamily of zinc-finger transcription factors. Nature reviews Molecular cell biology 3, 155-166.
    Nigg, E.A. (1995). Cyclin-dependent protein kinases: key regulators of the eukaryotic cell cycle. BioEssays : news and reviews in molecular, cellular and developmental biology 17, 471-480.
    Nishita, M., Hashimoto, M.K., Ogata, S., Laurent, M.N., Ueno, N., Shibuya, H., and Cho, K.W. (2000). Interaction between Wnt and TGF-beta signalling pathways during formation of Spemann's organizer. Nature 403, 781-785.
    Oren, M., and Rotter, V. (2010). Mutant p53 gain-of-function in cancer. Cold Spring Harbor perspectives in biology 2, a001107.
    Orsulic, S., Huber, O., Aberle, H., Arnold, S., and Kemler, R. (1999). E-cadherin binding prevents beta-catenin nuclear localization and beta-catenin/LEF-1-mediated transactivation. Journal of cell science 112 ( Pt 8), 1237-1245.
    Ozaki, T., and Nakagawara, A. (2011). p53: the attractive tumor suppressor in the cancer research field. Journal of biomedicine & biotechnology 2011, 603925.
    Pagano, M., Pepperkok, R., Verde, F., Ansorge, W., and Draetta, G. (1992). Cyclin A is required at two points in the human cell cycle. The EMBO journal 11, 961-971.
    Petitjean, A., Achatz, M.I., Borresen-Dale, A.L., Hainaut, P., and Olivier, M. (2007). TP53 mutations in human cancers: functional selection and impact on cancer prognosis and outcomes. Oncogene 26, 2157-2165.
    Pietenpol, J.A., Stein, R.W., Moran, E., Yaciuk, P., Schlegel, R., Lyons, R.M., Pittelkow, M.R., Munger, K., Howley, P.M., and Moses, H.L. (1990). TGF-beta 1 inhibition of c-myc transcription and growth in keratinocytes is abrogated by viral transforming proteins with pRB binding domains. Cell 61, 777-785.
    Rao, T.P., and Kuhl, M. (2010). An updated overview on Wnt signaling pathways: a prelude for more. Circulation research 106, 1798-1806.
    Reisman, D., Elkind, N.B., Roy, B., Beamon, J., and Rotter, V. (1993). c-Myc trans-activates the p53 promoter through a required downstream CACGTG motif. Cell growth & differentiation : the molecular biology journal of the American Association for Cancer Research 4, 57-65.
    Roy, B., Beamon, J., Balint, E., and Reisman, D. (1994). Transactivation of the human p53 tumor suppressor gene by c-Myc/Max contributes to elevated mutant p53 expression in some tumors. Molecular and cellular biology 14, 7805-7815.
    Santoni-Rugiu, E., Falck, J., Mailand, N., Bartek, J., and Lukas, J. (2000). Involvement of Myc activity in a G(1)/S-promoting mechanism parallel to the pRb/E2F pathway. Molecular and cellular biology 20, 3497-3509.
    Savagner, P., Yamada, K.M., and Thiery, J.P. (1997). The zinc-finger protein slug causes desmosome dissociation, an initial and necessary step for growth factor-induced epithelial-mesenchymal transition. The Journal of cell biology 137, 1403-1419.
    Schmidt, M., Fernandez de Mattos, S., van der Horst, A., Klompmaker, R., Kops, G.J., Lam, E.W., Burgering, B.M., and Medema, R.H. (2002). Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of cyclin D. Molecular and cellular biology 22, 7842-7852.
    Schwartz, G.K., and Shah, M.A. (2005). Targeting the cell cycle: a new approach to cancer therapy. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 23, 9408-9421.
    Semenza, G.L. (2001). HIF-1, O(2), and the 3 PHDs: how animal cells signal hypoxia to the nucleus. Cell 107, 1-3.
    Semenza, G.L. (2003). Targeting HIF-1 for cancer therapy. Nature reviews Cancer 3, 721-732.
    Seoane, J., Le, H.V., and Massague, J. (2002). Myc suppression of the p21(Cip1) Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature 419, 729-734.
    Shi, Y., and Massague, J. (2003). Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113, 685-700.
    Shtutman, M., Zhurinsky, J., Simcha, I., Albanese, C., D'Amico, M., Pestell, R., and Ben-Ze'ev, A. (1999). The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proceedings of the National Academy of Sciences of the United States of America 96, 5522-5527.
    Smith, T.G., Robbins, P.A., and Ratcliffe, P.J. (2008). The human side of hypoxia-inducible factor. British journal of haematology 141, 325-334.
    Stockinger, A., Eger, A., Wolf, J., Beug, H., and Foisner, R. (2001). E-cadherin regulates cell growth by modulating proliferation-dependent beta-catenin transcriptional activity. The Journal of cell biology 154, 1185-1196.
    Strahl, B.D., and Allis, C.D. (2000). The language of covalent histone modifications. Nature 403, 41-45.
    ten Berge, D., Koole, W., Fuerer, C., Fish, M., Eroglu, E., and Nusse, R. (2008). Wnt signaling mediates self-organization and axis formation in embryoid bodies. Cell stem cell 3, 508-518.
    ten Dijke, P., and Hill, C.S. (2004). New insights into TGF-beta-Smad signalling. Trends in biochemical sciences 29, 265-273.
    Tetsu, O., and McCormick, F. (1999). Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398, 422-426.
    Thiery, J.P., Acloque, H., Huang, R.Y., and Nieto, M.A. (2009). Epithelial-mesenchymal transitions in development and disease. Cell 139, 871-890.
    Timmerman, L.A., Grego-Bessa, J., Raya, A., Bertran, E., Perez-Pomares, J.M., Diez, J., Aranda, S., Palomo, S., McCormick, F., Izpisua-Belmonte, J.C., et al. (2004). Notch promotes epithelial-mesenchymal transition during cardiac development and oncogenic transformation. Genes & development 18, 99-115.
    Vaupel, P. (2004). The role of hypoxia-induced factors in tumor progression. The oncologist 9 Suppl 5, 10-17.
    Wagner, E.J., and Carpenter, P.B. (2012). Understanding the language of Lys36 methylation at histone H3. Nature reviews Molecular cell biology 13, 115-126.
    Walerych, D., Napoli, M., Collavin, L., and Del Sal, G. (2012). The rebel angel: mutant p53 as the driving oncogene in breast cancer. Carcinogenesis 33, 2007-2017.
    Walker, W., Zhou, Z.Q., Ota, S., Wynshaw-Boris, A., and Hurlin, P.J. (2005). Mnt-Max to Myc-Max complex switching regulates cell cycle entry. The Journal of cell biology 169, 405-413.
    Warner, B.J., Blain, S.W., Seoane, J., and Massague, J. (1999). Myc downregulation by transforming growth factor beta required for activation of the p15(Ink4b) G(1) arrest pathway. Molecular and cellular biology 19, 5913-5922.
    Wu, S., Cetinkaya, C., Munoz-Alonso, M.J., von der Lehr, N., Bahram, F., Beuger, V., Eilers, M., Leon, J., and Larsson, L.G. (2003). Myc represses differentiation-induced p21CIP1 expression via Miz-1-dependent interaction with the p21 core promoter. Oncogene 22, 351-360.
    Wu, Z., Sun, H., Zeng, W., He, J., and Mao, X. (2012). Upregulation of MircoRNA-370 induces proliferation in human prostate cancer cells by downregulating the transcription factor FOXO1. PloS one 7, e45825.
    Yang, H., Li, T.W., Ko, K.S., Xia, M., and Lu, S.C. (2009). Switch from Mnt-Max to Myc-Max induces p53 and cyclin D1 expression and apoptosis during cholestasis in mouse and human hepatocytes. Hepatology 49, 860-870.
    Yang, W., Shen, J., Wu, M., Arsura, M., FitzGerald, M., Suldan, Z., Kim, D.W., Hofmann, C.S., Pianetti, S., Romieu-Mourez, R., et al. (2001). Repression of transcription of the p27(Kip1) cyclin-dependent kinase inhibitor gene by c-Myc. Oncogene 20, 1688-1702.
    Yang, W., Xia, Y., Ji, H., Zheng, Y., Liang, J., Huang, W., Gao, X., Aldape, K., and Lu, Z. (2011). Nuclear PKM2 regulates beta-catenin transactivation upon EGFR activation. Nature 480, 118-122.
    Yook, J.I., Li, X.Y., Ota, I., Fearon, E.R., and Weiss, S.J. (2005). Wnt-dependent regulation of the E-cadherin repressor snail. The Journal of biological chemistry 280, 11740-11748.
    Youn, M.Y., Yokoyama, A., Fujiyama-Nakamura, S., Ohtake, F., Minehata, K., Yasuda, H., Suzuki, T., Kato, S., and Imai, Y. (2012). JMJD5, a Jumonji C (JmjC) domain-containing protein, negatively regulates osteoclastogenesis by facilitating NFATc1 protein degradation. The Journal of biological chemistry 287, 12994-13004.
    Yu, M.A., Shin, K.S., Kim, J.H., Kim, Y.I., Chung, S.S., Park, S.H., Kim, Y.L., and Kang, D.H. (2009). HGF and BMP-7 ameliorate high glucose-induced epithelial-to-mesenchymal transition of peritoneal mesothelium. Journal of the American Society of Nephrology : JASN 20, 567-581.
    Zhang, Q., Bai, X., Chen, W., Ma, T., Hu, Q., Liang, C., Xie, S., Chen, C., Hu, L., Xu, S., et al. (2013). Wnt/beta-catenin signaling enhances hypoxia-induced epithelial-mesenchymal transition in hepatocellular carcinoma via crosstalk with hif-1alpha signaling. Carcinogenesis 34, 962-973.
    Zhou, B.P., Deng, J., Xia, W., Xu, J., Li, Y.M., Gunduz, M., and Hung, M.C. (2004). Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial-mesenchymal transition. Nature cell biology 6, 931-940.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE