研究生: |
呂志偉 |
---|---|
論文名稱: |
1.反應S(3P)+OCS、S(3P)+O2、及O(3P)+SO2之高溫化學動力學研究。2.敏化InN/TiO2太陽能電池材料之研究 |
指導教授: |
鄭博元
李遠鵬 |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2007 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 267 |
中文關鍵詞: | 硫 、氧 、二氧化硫 、二氧化鈦 、氮化銦 、太陽能電池 |
外文關鍵詞: | solar cell, S, O, O2, OCS, SO2, TiO2, InN |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
第一部分: 動力學研究
吾人藉由原子共振吸收光譜法與活塞式衝擊波管進行O + SO2的高溫反應研究。在利用FACSIMILE程式適解實驗結果的過程中,反應機構中的反應(4-9)(O+SO2+M□SO3+M),與反應(4-16) (SO3 +M □ O+SO2+M)之速率常數值,k9與k16必須採用k9 (T) = (1.97 0.5)×10–65T 9.67 1.33 exp[(8590 2210)/T] cm6 molecule–2 s–1(適用溫度範圍1236–2340 K),與k16 (T) = (4.26 0.77)×10–15 exp[–(7140 1290)/T] cm6 molecule–2 s–1(適用溫度範圍1236–2340 K),才能成功地適解目前實驗所得之氧原子隨時間之變化圖,但在文獻中,尚無與兩者吻合的數值,而造成這個現象的真正原因,目前還不清楚。
根據林明璋研究組尚在研究中的O(3P)+SO2的位能曲面圖,我們推測目前文獻中所觀測到的1SO3並非經由repulsive triplet O+SO2 surface與singlet SO3 Morse potential的intersystem crossing而形成,而是藉由3SO3*的quench而得。所以我們推測O(3P) + SO2可能的反應機構為
O(3P) + SO2 □ SO + O2
3SO3*
3SO3* 1SO3
3SO3* O(3P) + SO2 不過真正的反應機構,尚需更多的實驗結果來驗證。
此外,吾人利用雷射光解-共振螢光法成功地量測了S + O2在298–878 K的溫度範圍內之速率常數,在298 K時,k1a為(1.92±0.29)□10□12 cm3 molecule□1 s□1,此與文獻中低溫的結果一致,而505□878 K所得之結果成功地連結了文獻中高溫(T □ 980 K)與低溫(T □ 423 K)的結果。在298–3460 K的溫度範圍內,速率常數k1可表示為k1a(T) = (9.02±0.27)×10□19 T 2.11 □ 0.15 exp[ (730± 120)/T] cm3 molecule□1 s□1。而理論計算的結果顯示,低溫時(T □ 500 K),主要的反應途徑是反應物先形成SOO-1(1A/)中間物,然後再轉換成過渡態TS1,最後形成產物SO+O。但是在高溫時,反應途徑2(反應物先形成SOO-4(3A//)中間物,接著轉換成過渡態TS6,然後再形成第二個中間物SO2(b3A2),最後形成產物SO+O)與反應途徑3(反應物會形成SOO-2(1A//)與SOO-3(1A//)兩種中間物,和TS4和TS5兩種過渡態,然後再形成產物)會變的越來越重要,而形成non-Arrhenius現象。藉由這些反應途徑所得之總速率常數與本實驗結果一致。
利用上述相同的方法,吾人亦成功的量測了S + OCS在298–985 K的溫度範圍內之速率常數,在298 K時,k1 為(2.7□0.5)□10□15 cm3 molecule□1 s□1此與Klemm實驗組所得之結果一致,而407□985 K所得之結果成功地連結了文獻中高溫(T □ 860 K)與低溫(T □ 478 K)的結果。在233–1680 K的溫度範圍內,速率常數k1可表示為k1(T) = (6.63□0.33)×10□20 T 2.57□0.19 exp[□(1180□120)/T] cm3 molecule□1 s□1。而理論計算的結果顯示,低溫時,主要的反應途徑是反應物先經由MSX1形成singlet SSCO,然後SSCO再分解,並經由TS5形成最後的產物S2 (a 1□g) + CO (X 1□+)。但是在高溫時,反應物直接經由TS1形成產物S2 (X 3□g□) + CO (X 1□+)的途徑變的較為重要。藉由這些反應途徑所得之總速率常數與本實驗結果一致。理論算結果亦顯示低溫高壓時,形成OCS2分子的反應途徑會得重要,同時S與OCS2或S2的干擾反應會加速硫原子的消耗速率,而得到較大的k1值。
第二部分: 敏化InN/TiO2太陽能電池材料之研究
就目前已知,本實驗是第一個以NH3與TMIn作為反應前趨物,藉由電漿增益化學蒸氣沉積法,沉積InN奈米粒子在TiO2奈米粒子薄膜上的實驗。吾人發現減小TMIn(820 ppm,稀釋氣體He)之流量、縮短InN沉積的時間,與提高沉積溫度(溫度範圍為358–523 K)皆可得到粒徑較小的InN奈米粒子。而所得之InN/TiO2樣品的轉換效率會隨著InN奈米粒子粒徑的增加而增強,不過在目前的實驗條件,轉換效率會有一極限值存在,無法無限制的增加,此乃因為生成之InN奈米粒子會阻塞住TiO2薄膜表面的孔隙,因而侷限了InN奈米粒子的吸附量,進而使得轉換效率無法有效地提升。目前我們所得最佳轉換效率的InN/TiO2樣品之開路電壓(Voc)為611 mV,短路電流( Jsc)為0.688 mA cm–2,填充因子( ff)為0.58,轉換效率為0.24 %,此量測是在太陽光譜為AM 1.5,光照強度為100 mW cm–2的條件下進行。此結果與Nozik實驗組之InAs/TiO2的結果極為類似,其所得樣品之開路電壓(Voc)為350 mV,短路電流(Jsc)為1.8 mA cm–2,填充因子(ff)為0.48,轉換效率為0.3 %。
1. A. G. Gaydon, and H. G. Wolfhard, Flames, Their Structure, Radiation, and Temperature, 2nd edn. Macmillan, New York, 1960.
2. A. D. Kirshenbaum, and A. V. Grosse, J. Am. Chem. Soc. 78, 2020 (1956).
3. T. Ko, P. Marshall, and A. Fontijn, J. Phys. Chem. 94, 1401 (1990).
4. N. S. Rasor, and J. D. McClelland, Rev. Sci. Instr. 31, 595 (1960).
5. P. L. Srart, J. Sci. Instr. 37, 17 (1960).
6. A. Grillo, R. Reed, and M. W. Slack, Proc. Int. Symp. Shock Tubes Waves 12, 486 (1980).
7. M. Slack, and A. Grillo, J. Chem. Phys. 73, 987 (1980).
8. R. W. Fair and B. A. Thrush, Trans. Faraday Soc. 65, 1557 (1969).
9. R. W. Fair, A. van Roodselaar, and O. P. Strausz, Can. J. Chem. 49, 1659(1971).
10. D. D. Davis, R. B. Klemm, and M. Pilling, Int. J. Chem. Kinet. 4, 367
(1972).
11. R. J. Donovan and D. J. Little, Chem. Phys. Lett. 13, 488 (1972).
12. M. A. A. Clyne and L. W. Townsend, Int. J. Chem. Kinet. 1, 73 (976).
13. M. A. A. Clyne and P. D. Whitefield, J. Chem. Soc., Faraday Trans. 2 75, 1327 (1979).
14. A. Miyoshi, H. Shiina, K. Tsuchiya, and H. Matsui, Symp. Int. Combust. Proc. 26, 535 (1996).
15. K. H. Homann, G. Krome, and H. Gg. Wagner, Ber. Bunsenges. Phys. Chem. 72, 998 (1968).
16. D. Woiki and P. Roth, Int. J. Chem. Kinet. 27, 59 (1995).
17. K. Saito, Y. Ueda, R. Ito, T. Kakumoto, and A. Imamura, Int. J. Chem. Kinet. 18, 871 (1986).
18. K. Tsuchiya, K. Kamiya, and H. Matsui, Int. J. Chem. Kinet. 29, 57 (1997).
19. H. Shiina, M. Oya, K. Yamashita, A. Miyoshi, and H. Matsui, J. Phys. Chem. 100, 2136 (1996).
20. M. Oya, H. Shiina, K. Tsuchiya, and H. Matsui, Bull. Chem. Soc. Jpn. 67, 2311 (1994).
21. D. Woiki and P. Roth, Ber. Bunsenges. Phys. Chem. 10, 1347 (1992).
22. D. Woiki, M. W. Markus, and P. Roth, J. Phys. Chem. 97, 9682 (1993).
23. A. J. Hay and R. L. Belford, J. Chem. Phys. 47, 3944 (1967).
24. R. B. Klemm and D. D. Davis, J. Phys. Chem. 78, 1137 (1974).
25. E. Jakubowski, M. G. Ahmed, E. M. Lown, H. S. Sandhu, R. K. Gosavi, and O. P. Strausz, J. Am. Chem. Soc. 94, 4094 (1972).
26. W. H. Breckenridge and H. Taube, J. Chem. Phys. 53, 1750 (1970).
27. H. E. Gunning and O. P. Strausz, Adv. Photochem. 4, 143 (1966).
28. S. D. Possion, J. école polytech, 7, 319 (1808).
29. J. Challis, Phil. Mag. (3) 32, 494 (1848).
30. G. G. Stokes, Phil. Mag. (3) 33, 349 (1848).
31. B. Riemann, Abhandl. Ges. Wiss. Göttingen, Math. Physik. Klasse, 8, 43 (1860).
32. W. J. M. Rankine, Trans. Roy. Soc. 160, 277 (1870).
33. G. I. Taylor, Proc. Roy Soc. 84A, 371 (1910).
34. R.Courant, and K. O. Friedrichs, Supersonic Flow and Shock Waves; Interscience, New York, 1948.
35. W. Jost, Explosion and Combustion Process in Gases; McGraw-Hill, New York, 1946.
36. R. H. Cole, Underwater Explosions; Princeton University Press, Princeton 1948.
37. B. Lewis, and G. Elbe, Combustion Flames and Explosions of Gases; 2nd ed. Academic, New York, 1961.
38. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids; Wiley, New York, 1954.
39. G. N. Patterson, Molecular Flow of Gases; Wiley, New York, 1956.
40. J. K. Wright, Shock Tubes; Methuen and Co. Ltd., London, 1961.
41. J. N. Bardley, Shock Waves in Chemistry and Physics; Methuen and Co. Ltd., London, 1962.
42. H. Lamb, Hydrodynamics; University Press Cambridge, 6th edition, Dover, New York, 1945, 574.
43. E. F. Greene, and J. P. Toennies,; Chemical Reaction in Shock Wave; chapter 4, New York, 1964.
44. E. V. Laitone, J. Aeronaut. Sci. 23, 846 (1956).
45. R. E. Marshak, Phys. Fluids 1, 24 (1958).
46. H. M. Smallwood, J. Am. Chem. Soc. 51, 1985 (1929).
47. M. J. Christie, R. G. W. Norrish, and G. Porter, Proc. Roy. Soc. A216, 152 (1952).
48. M. Koshi, M. Yoshimura, K. Fukuda, H. Matsui, K. Saito, M. Watanabe, A. Imamura, and C. Chen, J. Chem. Phys. 93, 8703 (1990).
49. C.-C. Hsiao, Y.-P. Lee, N. S. Wang, J. H. Wang, and M. C. Lin, J. Phys. Chem. A 106, 10231 (2002).
50. D. Davis, and W. Bruan, Applied Optics 7, 2071 (1968).
51. R. N. Rudolph and E. C. Y. Inn, J. Geophys. Res., C: Oceans Atmos. 86, 9891 (1981).
52. A. Grillo, R. Reed, and M. W. Slack, Proc. Int. Symp. Shock Tubes Waves 12, 486 (1980).
53. M. Slack, and A. Grillo, J. Chem. Phys. 73, 987 (1980).
54. K. R. Stuart, W. S. James, K, Szu-Cherng, and R. B. Klemm, J. Phys. Chem., A 101, 1104 (1997).
55. D. B. Sheen, J. Chem. Phys. 52, 648 (1970).
56. K. Tsuchiya, K. Kamiya, and H. Matsui, Int. J. Chem. Kinet. 29, 57 (1997).
57. D. Woiki, and P. Roth, Int. J. Chem. Kinet. 27, 59 (1995).
58. D. J. Williams, Combust. Flame 12, 165 (1968).
59. K. H. Homann, G. Krome, and H. Gg. Wagner, Ber. Bunsenges. Phys. Chem. 72, 998 (1968).
60. J. Naidoo, A. Goumri, and P. Marshall, Proceedings of the Combusion Institute 30, 1219 (2005).
61. L. Hindiyarti, P. Glarborg, and P. Marshall, J. Phys. Chem. A 111, 3984 (2007).
62. A. Grillo, R. Reed, and M. W. Slack, J. Chem. Phys. 70, 1634 (1979).
63. C.-W. Lu, Y.-J. Wu, Y.-P. Lee, R. S. Zhu, and M. C. Lin, J. Phys. Chem. A 107, 11020 (2003).
64. W. Tsang and R. F. Hampson, J. Phys. Chem. Ref. Data 15, 1087 (1986).
65. C.-W. Lu, Y.-J. Wu, Y.-P. Lee, R. S. Zhu, and M. C. Lin, J. Chem. Phys. 121, 8271 (2004).
66. H. J. Plach and J. Troe, Int. J. Chem. Kinet. 16, 1531 (1984).
67. C.-W. Lu, Y.-J. Wu, Y.-P. Lee, R. S. Zhu, and M. C. Lin, J. Phys. Chem. A 107, 11020, (2003).
68. A. Yilmaz, L. Hindiyarti, A. D. Jensen, P. Glarborg, and P. Maeshall, J. Chem. Phys. A 110, 6654 (2006).
69. FACSIMILE is a computer software for modeling process and chemical reaction kinetics released by AEA Technology, Oxfordshire, United Kingdom.
70. D. Woiki, and P. Roth, Int. J. Chem. Kinet. 27, 59 (1995).
71. H. J. Plaxh, and J. Troe, J. Chem. Kinet. 16, 1531 (1984).
72. B. P. Levitt, and D. B. Sheen, Trans Faraday Soc. 63, 2955 (1967).
73. J. H. Kiefer, J. Chem. Phys. 62, 1531 (1975)
74. O. I. Smith, S. Tseregounis, and S. N. Wang, Int. J. Chem. Kinet. 14, 679 (1982).
75. R. Atkinson, and J. N. Jr. Pitts, Int. J. Chem. Kinet. 10, 1081 (1978).
76. R. Atkinson, and J. N. Jr. Pitts, Chem. Phys. Lett. 29, 28 (1974).
77. A. Levy, and E. L. Merryman, Combust. Flame 9, 229-240 (1965).
78. A. Yilmaz, L. Hindiyarti, A. D. Jensen, P. Glarborg, and P. Marshall, J. Phys. Chem. A 110, 6654 (2006).
79. D. C. Astholz, K. Glanzer, and J. Troe, Symp. Int. Combust. Proc. 11, 232 (1978).
80. D. D. Davis, Can. J. Chem. 52, 1405 (1974)
81. D. C. Astholz, K. Glanzer, and J. Troe, J. Chem. Phys. 70, 2409 (1979)
82. A. A. Westenberg, and N. de Hass, J. Chem. Phys. 63, 5411 (1975)
83. R. W. Fair and B. A. Thrush, Trans. Faraday Soc. 65, 1557 (1969).
84. R. W. Fair, A. van Roodselaar, and O. P. Strausz, Can. J. Chem. 49, 1659(1971).
85. D. D. Davis, R. B. Klemm, and M. Pilling, Int. J. Chem. Kinet. 4, 367 (1972).
86. R. J. Donovan and D. J. Little, Chem. Phys. Lett. 13, 488 (1972).
87. M. A. A. Clyne and L. W. Townsend, Int. J. Chem. Kinet. 1, 73 (976).
88. M. A. A. Clyne and P. D. Whitefield, J. Chem. Soc., Faraday Trans. 2 75, 1327 (1979).
89. A. Miyoshi, H. Shiina, K. Tsuchiya, and H. Matsui, Symp. Int. Combust. Proc. 26, 535 (1996).
90. K. H. Homann, G. Krome, and H. Gg. Wagner, Ber. Bunsenges. Phys. Chem. 72, 998 (1968).
91. D. Woiki and P. Roth, Int. J. Chem. Kinet. 27, 59 (1995).
92. K. Saito, Y. Ueda, R. Ito, T. Kakumoto, and A. Imamura, Int. J. Chem. Kinet. 18, 871 (1986).
93. K. Tsuchiya, K. Kamiya, and H. Matsui, Int. J. Chem. Kinet. 29, 57 (1997).
94. J. N. Murrell, W. Craven, and S. C. Farantos, Mol. Phys. 49, 1077 (1983).
95. W. Craven and J. N. Murrell, J. Chem. Soc., Faraday Trans. 2 83, 1733 (1987).
96. C. Gonzalez and H. B. Schlegel, J. Phys. Chem. 90, 2154 (1989).
97. R. N. Rudolph and E. C. Y. Inn, J. Geophys. Res. C: Oceans Atmos. 86, 9891 (1981).
98. FACSIMILE is a computer software for modeling process and chemical-reaction kinetics released by AEA Technology, Oxfordshire, United Kingdom.
99. N. Isshiki, Y. Murakami, K. Tsuchiya, A. Tezaki, and H. Matsui, J. Phys. Chem. A 107, 2464 (2003).
100. H. Hippler, R. Rahn, and J. Troe, J. Chem. Phys. 93, 6560 (1990).
101. K. Schofield, Combust. Flame 124, 137 (2001).
102. K. Tsuchiya, K. Kamiya, and H. Matsui, Int. J. Chem. Kinet. 29, 57 (1997).
103. Y. Murakami, S. Onishi, T. Kobayashi, N. Fujii, N. Isshiki, K. Tsuchiya, A. Tezaki, and H. Matsui, J. Phys. Chem. A 107, 10996 (2003).
104. H. Shiina, M. Oya, K. Yamashita, A. Miyoshi, and H. Matsui, J. Phys. Chem. 100, 2136 (1996).
105. R. B. Klemm and D. D. Davis, J. Phys. Chem. 78, 1137 (1974).
106. C.-W. Lu, Y.-J. Wu, Y.-P. Lee, R. S. Zhu, and M. C. Lin, J. Phys. Chem. A 107, 11020 (2003).
107. S. J. Klippenstein, A. F. Wagner, R. C. Dunbar, D. M. Wardlaw, and S. H. Robertson, VARIFLEX: Version 1.00, 1999.
108. V. Mokrushin, V. Bedanov, W. Tsang, M. R. Zachariah, V. D. Knyazev, ChemRate, Version 1.19, National Institute of Standards and Technology, Gaithersburg, MD 20899, 2002.
109. H. Shiina, M. Oya, K. Yamashita, A. Miyoshi, and H. Matsui, J. Phys. Chem. 100, 2136 (1996).
110. M. Oya, H. Shiina, K. Tsuchiya, and H. Matsui, Bull. Chem. Soc. Jpn. 67, 2311 (1994).
111. D. Woiki and P. Roth, Ber. Bunsenges. Phys. Chem. 10, 1347 (1992).
112. D. Woiki, M. W. Markus, and P. Roth, J. Phys. Chem. 97, 9682 (1993).
113. A. J. Hay and R. L. Belford, J. Chem. Phys. 47, 3944 (1967).
114. R. B. Klemm and D. D. Davis, J. Phys. Chem. 78, 1137 (1974).
115. E. Jakubowski, M. G. Ahmed, E. M. Lown, H. S. Sandhu, R. K. Gosavi, and O. P. Strausz, J. Am. Chem. Soc. 94, 4094 (1972).
116. W. H. Breckenridge and H. Taube, J. Chem. Phys. 53, 1750 (1970).
117. H. E. Gunning and O. P. Strausz, Adv. Photochem. 4, 143 (1966).
118. C. Gonzalez and H. B. Schlegel, J. Phys. Chem. 90, 2154 (1989).
119. B. M. Cheng, M. Bahou, W. C. Chen, C.-H. Yu, Y.-P. Lee, and L. C. Lee, J. Chem. Phys. 117, 1633 (2002).
120. R. N. Rudolph and E. C. Y. Inn, J. Geophys. Res. C: Oceans Atmos. 86, 9891 (1981).
121. FACSIMILE is a computer software for modeling process and chemical-reaction kinetics released by AEA Technology, Oxfordshire, United Kingdom.
122. S. J. Klippenstein, A. F. Wagner, R. C. Dunbar, D. M. Wardlaw, and S. H. Robertson, VARIFLEX: Version 1.00, 1999.
123. V. Mokrushin, V. Bedanov, W. Tsang, M. R. Zachariah, V. D. Knyazev, ChemRate, Version 1.19, National Institute of Standards and Technology, Gaithersburg, MD 20899, 2002.
124. W.-J. Lo, H.-F. Chen, P.-H. Chou, and Y.-P. Lee, J. Chem. Phys. 121, 12371 (2004).
125. http://www.moeaec.gov.tw
126. M. Grätzel, Nature 414, 338 (2001).
127. http://www.solar-i.com/know.html#12
128. 經濟部太陽光電示範系統資訊網
http://210.69.121.54/moea/Docs/index.html
129. 楊素華, 蔡泰成, 科學發展 390, 50 (2005).
130. http://www.re.org.tw/com/f4/9506a/index.aspx?a=202
131. 尤如瑾, 薄膜型太陽電池發展技術概述
http://www.itri.org.tw/chi/services/ieknews/20060516100302590BA-0.doc
132. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Muller, P. Liska, N. Vlachopoulos, and M. Gratzel, J. Am. Chem. Soc. 115, 6382 (1993).
133. J. L. Blackburn, D. C. Selmarten, and A. J. Nozik, J. Phys. Chem. B 107, 14154 (2003).
134. R. Vogel, P. Hoyer, and H. Weller, J. Phys. Chem. 98, 3183 (1994).
135. A. Yamamoto, M. Tsujino, M. Ohkubo, and A. Hashimoto, Sol. Energy Mater. Sol. Cells 35, 53 (1994).
136. Jeng-Han Wang, and M. C. Lin ChemPhysChem 5, 1615 (2004)
137. J. Desilvestro, M. Grätzel, L. Kaven, and J. Moser, J. Am. Chem. Soc.
107, 2988 (1985).
138. H. Nusbaumer, J.-E. Moser, S. M. Zakeeruddin, M. K. Nazeeruddin, and M. Grä1tzel, J. Phys. Chem. B 105, 10461 (2001).
139. M. Grätzel, Nature 414, 338 (2001).
140. B. O’Regan, and M. Grätzel, Nature 353, 737 (1991).
141. M. Grätzel, J. Photochem. and Photobio. A: Chem. 164, 3 (2004).
142. Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska, and M. Grätzel,
J. Phys. Chem. B 107, 8981 (2003).
143. S. Nakade, Y. Makimoto, W. Kubo, T. Kitamur, Y. Wada, and S. Yanagida, J. Phys. Chem. B 109, 3480 (2005).
144. S. Greg, B. Carlo, and A. Roberto, Solar Energy Material and Solar Cells 32, 259 (1994).
145. C. J. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, and M. Grätzel, J. Am. Ceram. Soc. 80, 3157, (1997).
146. P. V. Kamat, J. Phys. Chem. C 111, 2834 (2007).
147. C. Klein, Md. K. Nazeeruddin, D. D. Censo, P. Liska and M. Grätzel﹐Inorg. Chem. 43, 4216 (2004).
148. I. Robel, V. Subramanian, M. Kuno, and P. V. Kamat, J. Am. Chem. Soc. 128, 2385 (2006).
149. A. Zaban, S. Ferrere, J. Sprague, and B. A. Gregg, J. Phys. Chem. B 101, 55 (1997).
150. S. Ito, S. M. Zakeeruddin, R. H. Baker, P. Liska, R. Charvet,
P. Comte, M. K. Nazeeruddin, P. Péchy, M. Takata, H. Miura,
S. Uchida, and Michael Grätzel, Adv. Mater. 18, 1202 (2006).
151. S. Greg, B. Carlo, and A. Roberto, Solar Energy Material and Solar Cells 32, 259 (1994).
152. C. J. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, and M. Grätzel, J. Am. Ceram. Soc. 80, 3157, (1997).
153. Jeng-Han Wang, and M. C. Lin ChemPhysChem 5, 1615 (2004).
154. S. Fujieda, M. Mizuta, and Y. Matsumoto, Jpn. J. Appl. Phys. 26, 2067 (1987).
155. F.-H. Yang, J.-S. Hwang, K.-H. Chen, Y.-J. Yang, T.-H. Lee, L.-G. Hwa, and L.-C. Chen Thin Solid Films 405, 194 (2002).
156. N. Takahashi, A. Niwa, H. Sugiura, and T. Nakamura, Chem. Commun. 318 (2003).
157. J. L. Blackburn, D. C. Selmarten, and A. J. Nozik, J. Phys. Chem. B 107, 14154 (2003).