研究生: |
李冠群 Lee, Kuan-Chun |
---|---|
論文名稱: |
自由機率中組合學工具與S變換之探討 Combinatorial Aspects and S-Transforms in Free Probability Theory |
指導教授: |
黃皓瑋
Huang, Hao-Wei |
口試委員: |
王俊超
Wang, Jiun-Chau 方向 Fang, Xiang |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 36 |
中文關鍵詞: | 自由機率論 、自由組合學 、自由累積量 、自由捲積 、S變換 |
外文關鍵詞: | Free probability theory, Free combinatorics, Free cumulants, Free convolution, S-transform |
相關次數: | 點閱:25 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自由機率論大致上有兩種研究方法,其一為 Bercovici 與 Voiculescu 所建立的分析方法,又稱為自由調和分析,其二為 Nica 與 Speicher 所發展的組合學方法,也被稱為自由組合學。在研究自由乘法卷積方面,自由組合學給予了極大的貢獻。我們整理了一些自由組合學的重要結果,並利用組合學的方法解釋了在自由調和分析中處理自由乘法卷積的工具–S-transform。最後,我們也利用這些自由組合學的工具重新證明了一些最初是使用自由調和分析方法所證明的結果。
There are generally two approaches to studying free probability theory. The first one, established by Bercovici and Voiculescu, is known as free harmonic analysis, which uses analytical methods. The second approach, developed by Nica and Speicher, is known as free combinatorics, which uses combinatorial methods. Free combinatorics has made significant contributions to the study of free multiplicative convolution. We organize some important results from free combinatorics and provide interpretations of the S-transform, a tool used in free harmonic analysis to handle free multiplicative convolution, using combinatorial methods. Finally, we use these tools to re-prove some results that were originally obtained using free harmonic analysis.
[1] D. Voiculescu, “Multiplication of certain non-commuting random variables,” Journal of
Operator Theory, pp. 223–235, 1987.
[2] N. R. Rao and R. Speicher, “Multiplication of free random variables and the s-transform:
The case of vanishing mean,” Electronic Communications in Probability, vol. 12, pp. 248–
258, 2007.
[3] O. Arizmendi E and V. Pérez-Abreu, “The s-transform of symmetric probability measures
with unbounded supports,” Proceedings of the American Mathematical Society, vol. 137,
no. 9, pp. 3057–3066, 2009.
[4] A. Nica and R. Speicher, Lectures on the combinatorics of free probability, vol. 13. Cam-
bridge University Press, 2006.
[5] P. Biane, “Some properties of crossings and partitions,” Discrete Mathematics, vol. 175,
no. 1-3, pp. 41–53, 1997.
[6] J. A. Mingo and R. Speicher, Free probability and random matrices, vol. 35. Springer,
2017.