簡易檢索 / 詳目顯示

研究生: 沐瑞曼
Mohanraman, Rajeshkumar
論文名稱: P型熱電材料AgSb1-xMxTe2 (M = Bi, In, Sn)其相組成、奈米結構和熱電特性之研究
Phase compositions, nanostructures and thermoelectric properties in the p-type materials AgSb1-xMxTe2 (M = Bi, In and Sn)
指導教授: 陳洋元
Chen, Yang-Yuan
李志浩
Lee, Chih-Hao
口試委員: 朱治偉
Chu, Cih-Wei
張嘉昇
Chang, Chia-Seng
周方正
Chou, Fang-Cheng
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 111
中文關鍵詞: 熱電參雜優質係數
外文關鍵詞: thermoelectric, doping, figure of merit
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • One type of energy conversion technology that has gained renewed attention is thermoelectric energy conversion, where heat is converted directly into electricity using a class of materials known as thermoelectric materials. Thermoelectric (TE) materials are becoming increasingly important in the field of electricity generation and environmentally friendly refrigeration devices. AgSbTe2 has been firmly established as a potential TE material because of its relatively low thermal conductivity (0.6 – 0.7 Wm-1K-1). AgSbTe2 is widely identified as a disordered NaCl type (Fm-3m) where Ag and Sb randomly occupy the Na site. Doping is a potential approach to optimize the thermoelectric properties of p-type AgSbTe2 by reducing its thermal conductivity and adjusting its carrier concentration. In this study, Sb3+ was substituted with Bi3+, In3+ and Sn2+ in p-type Ag(Sb1-xMx)Te2 systems to optimize the charge-carrier concentration and simultaneously reduce lattice thermal conductivity by enhancing phonon scattering through the combined effects of lattice defects and the presence of nanoscale microstructures dispersed in the matrix. As a result the highest TE figure of merit ZT = 1.35, 1.1 and 1.04 were obtained for AgSb0.93In0.07Te2, AgSb0.97Sn0.03Te2 and AgSb0.957Bi0.05Te2 samples at 650 K, 600 K and 570 K respectively. These results indicate that doping with Bi, In and Sn is an effective method to enhance the TE performance of p-type AgSbTe2 with ZT = 0.9.


    熱電能量的轉換是一種利用熱電材料,熱可以直接轉變成電,而這種形式的能源轉換技術已經成為能源轉換上全新的焦點。 在發電和環保致冷設備的領域中熱電材料變得越來越重要。 由於銀銻鍗擁有相對低的熱導率(0.6 – 0.7 Wm-1K-1)使得這種材料被認為是有潛力的熱電材料。 銀銻鍗被認定屬於無序的氯化鈉型(Fm-3m),銀和銻隨機分佈在鈉位置。 在P型銀銻鍗中的參雜效應是藉由減少熱導性和調整載子濃度以提升此材料熱電特性並使其最佳化的方法。 在這篇研究中,在P型Ag(Sb1-xMx)Te2 系統中Sb3+ 被Bi3+、 In3+ 和 Sn2+ 取代,藉由結合晶格缺陷的效應以及材料中的奈米結構,進而增加聲子散射,為了使電荷載子的濃度優化並同時使晶格熱導性減少。 結果我們分別從AgSb0.93In0.07Te2, AgSb0.97Sn0.03Te2 和AgSb0.957Bi0.05Te2 樣品中得到最高的熱電參數 ZT = 1.35, 1.1 和1.04. 這些結果指出參雜鉍,銦和錫是一個有效的方法使P型AgSbTe2熱電性能提升。

    TABLE OF CONTENTS Abstract i Dedication iii Acknowledgement... iv List of tables… ix List of figures… x List of Publications… xiv Conference Presentations………………………………………………………..xv List of Abbreviations and Symbols……………………………………………...xvii Chapter 1. Introduction 1 1.1 Thermoelectricity 2 1.1.1 Seebeck Effects 2 1.1.2 Peltier Effect 4 1.1.3 Thomson Effects 6 1.2 Thermoelectric Devices and Applications 7 1.3 Thermoelectric Efficiency 11 1.3.1 Seebeck Coefficient 13 1.3.2 Electrical Conductivity 14 1.3.3 Thermal Conductivity…………………………………...16 1.4 State of Art thermoelectric Materials 18 1.5 AgSbTe2 structure 20 2. Experimental methods 23 2.1 Synthesis 23 2.1.1 Bridgman Technique 23 2.1.2 Experimental Synthesis 26 2.1.3 Analysis Techniques 27 2.2 Sample Characterization 30 2.2.1 Fundamentals of X-ray diffraction 30 2.2.2 Powder X-ray diffraction (PXRD) 35 2.2.3 X-ray Fluorescence Spectroscopy (XRF) 39 2.2.4 Electron Probe Micro Analyzer (EPMA) 42 2.2.5 Scanning Electron Microscope (SEM) 44 2.3 Electrical Transport Properties Measurement 46 2.3.1 Resistivity and Seebeck Coefficient 46 2.3.1 Hall Effect 47 2.4 Thermal Analysis 48 2.5 Thermal Conductivity Measurements 50 3. Enhanced thermoelectric performance in Bi-doped p-type AgSbTe2 compounds 52 3.1 Highlights 52 3.2 Importance 52 3.3 Results and Discussion 53 3.3.1 Phase and Structural analysis 53 3.3.2 Thermoelectric properties 54 3.4 Summary 58 3.5 Supporting Information 63 4. Influence of In doping on the thermoelectric properties of AgSbTe2 compound with enhanced figure of merit 66 4.1 Highlights 66 4.2 Importance 66 4.3 Results and Discussion 67 4.3.1 Phase and Structural analysis 67 4.3.2 Thermoelectric properties 68 4.6 Summary 72 4.7 Supporting Information 78 5. Influence of a Nanoscale Ag2Te Precipitates on the Thermoelectric Properties of the Sn Doped P-Type AgSbTe2 Compound 82 5.1 Highlights 82 5.2 Importance 82 5.3 Results and Discussion 83 5.3.1 Phase and Structural analysis 83 5.3.2 Thermoelectric properties 85 5.4 Summary 88 5.5 Supporting Information 93 6. Conclusion and Future work 96 Bibliography 98

    1. G. S. Nolas, J. Sharp, and H. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments, Springer, New York, 2001.
    2. D. M. Rowe, CRC Handbook of thermoelectrics; CRC Press: Boca Raton, FL, 1995.
    3. D. Rowe, ed., Thermoelectrics Handbook: Macro to Nano, CRC Press, Boca Raton, 2006.
    4. T. M. Tritt and M. A. Subramanian, MRS Bull., 2006, 31, 188.
    5. T. M. Tritt, ed., Recent Trends in Thermoelectric Materials Research, in Semiconductors and Semimetals, Academic Press, San Diego, 2001, vol. 69–71.
    6. G. Chen, M. S. Dresselhaus, G. Dresselhaus, J. P. Fleurial and T. Caillat, Int. Mater. Rev., 2003, 48, 45.
    7. M. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J. P. Fleurial and P. Gogna, Adv. Mater., 2007, 19, 1043.
    8. H. J. Goldsmid, Thermoelectric Refrigeration, Plenum Press, New York 1964.
    9. D. D. Pollock, Thermocouples: Theory and Properties, CRC Press, Boca Raton, FL 1991.
    10. R. Venkatasubramanian et al., Nature., 2001, 413, 597.
    11. Recent Trends in Thermoelectric Materials Research III, Vol. 71 (Ed.:T. M. Tritt ), Academic Press, San Diego, CA 2001.
    12. Matsubara, K. in International Conference on Thermoelectrics 2002, 418–423.
    13. C. Wood, Rep. Prog. Phys., 1988, 51, 459.
    14. F. J. DiSalvo, Science., 1999, 285, 703.
    15. B. C. Sales, Science., 2002, 295, 1248.
    16. S. B. Riffat, X. Ma, Appl. Therm. Eng., 2003, 23, 913.
    17. L. E. Bell, Science., 2008, 321, 1457.
    18. G. J. Snyder, E. S. Toberer, Nat. Mater., 2008, 7, 105.
    19. H. J. Goldsmid, A. R. Sheard, D. A. Wright, The performance of bismuth telluride thermojunctions, British Journal of Applied Physics., 1958, 9, 365–370.
    20. H. .J. Goldsmid, R.W. Douglas, The use of semiconductors in thermoelectric refrigeration, British Journal of Applied Physics., 1954, 5, 386–390.
    21. R. R. Heikes, & R. W. Ure, Thermoelectricity: Science and Engineering Interscience, New York, 1961.
    22. F. D. Rosi, Thermoelectricity and thermoelectric power generation. Solid-State Electron., 1968, 11, 833–848.
    23. F. D Rosi, E. F. Hockings, & N. E. Lindenblad, Semiconducting materials for thermoelectric power generation. RCA Rev., 1961, 22, 82–121.
    24. A. F. Loffe, Semiconductor Thermoelements and Thermoelectric Cooling Infosearch, UK, 1957.
    25. C. Uher, Thermoelectric Materials Research I (ed. Tritt, T.) 139–253 (Semiconductors and Semimetals Series 69, Elsevier, 2001).
    26. G. S Nolas, J. Poon, & M. Kanatzidis, Recent developments in bulk thermoelectric materials. Mater. Res. Soc. Bull., 2006, 31, 199–205.
    27. S. M. Kauzlarich, S. R. Brown, & G. J. Snyder, Zintl phases for thermoelectric devices. Dalton Trans., 2007, 2099–2107.
    28. B. C. Sales, D. Mandrus, R. K. Williams, Science., 1996, 272, 1325.
    29. G. S. Nolas, D. T. Morelli, T. M. Tritt, Annu. Rev. Mater. Sci., 1999, 29, 89.
    30. G. S. Nolas, J. L. Cohn, G. A. Slack, S. B. Schujman, Appl. Phys. Lett., 1998, 73, 178.
    31. C. J. Vineis, A. Shakouri, A. Majumdar, M. G. Kanatzidis, Nanostructured thermoelectrics: big efficiency gains from small features, Advanced Materials., 2010, 22, 3970–3980.
    32. P. Vaqueiro, A.V. Powell, Recent developments in nanostruc- tured materials for high-performance thermoelectrics, Journal of Materials Chemistry., 2010, 20, 9577–9584.
    33. S. K. Bux, J. P. Fleurial, R. B. Kaner, Nanostructured materials for thermoelectric applications, Chemical Communications., 2010, 46, 8311–8324.
    34. M. G. Kanatzidis , Chem. Mater., 2010, 22 , 648 .
    35. M. S. Dresselhaus , G. Chen , M. Y. Tang , R. G. Yang , H. Lee , D. Z. Wang , Z. F. Ren , J. P. Fleurial , P. Gogna , Adv. Mater., 2007, 19, 1043.
    36. G. Chen, M. S. Dresselhaus, J.-P. Fleurial, T. Caillat, Int. Mater. Rev., 2003, 48, 45.
    37. T. J Seebeck, Magnetische polarisation der metalle und erze durck temperatur-differenz, Abh. K. Akad. Wiss., 1823, 265.
    38. Seebeck T. J. Ann. Phys., (Leipzig) 1826, 2(6):1
    39. J. C. Peltier, Nouvelles experiences sur la caloriecete des courans electriques. Ann. Chem. LVI, 1834, 371-387.
    40. W. Thomson, 1851, On a mechanical theory of thermoelectric currents, Proc. Roy. Soc., Edinburgh, 91-98
    41. T. M. Tritt, Thermoelectric materials 2000--the next generation materials for small-scale refrigeration and power generation applications : symposium held April 24-27, 2000, San Francisco, California, U.S.A (Materials Research Society, Warrendale, Pa., 2001), p. 1 v. (various pagings)
    42. D. K. C. MacDonald, Thermoelectricity: An Introduction to the Principles (Wiley, New York, 1962).
    43. N. W. Ashcroft, & N. D. Mermin, Solid State Physics (Saunders College, FortWorth, TX 1976).
    44. G. Mahan, B. Sales, & J. Sharp, Thermoelectric materials: New approaches to an old problem. Phys. Today., 1997, 50, 42-47.
    45. R. A. Taylor, G. Solbrekken, Comprehensive system-level optimization of thermoelectric devices for electronic cooling applications, Components and Packaging Technologies, IEEE Transactions on (Volume:31 , Issue: 1, 2008)
    46. "Thermoelectric Coolers Basics".TEC Microsystems. Retrieved 16 March 2013
    47. J. Yang, “Automotive Applications of Thermoelectric Materials”. Journal of Electronic Materials., 2009, 38; 1245.
    48. http://www2.jpl.nasa.gov/basics/rtg.gif.
    49. http://www.themotorreport.com.au/23040/bmw-and-nasa-teaming-up-to-devise-regenerativeexhaust-system/.
    50. J. R. Sootsman, D. Y. Chung, M. G. Kanatzidis, New and old concepts in thermoelectric materials, Angewandte Chemie., International Edition 48 (2009)
    51. C. J. Vineis, A. Shakouri, A. Majumdar, M. G. Kanatzidis, Nanostructured thermoelectrics: big efficiency gains from small features, Advanced Materials., 2010, 22, 3970–3980.
    52. A. J. Minnich, M. S. Dresselhaus, Z. F. Ren, G. Chen, Bulk nanostructured thermoelectric materials: current research and future prospects, Energy & Environmental Science., 2009, 2, 466–479.
    53. D. Greig, Electrons in metals and semiconductors, McGraw-Hill, London, UK, 1969.
    54. G. A. Slack, in: M. Rowe (Ed.), CRC Handbook of Thermo- electrics, CRC Press, Boca Raton, FL, 1995.
    55. Y. C. Lan, A. J. Minnich, G. Chen, Z. F. Ren, Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach, Advanced Functional Materials., 2010, 20, 357–376
    56. J. R. Szczech, J. M. Higgins, S. Jin, Enhancement of the thermoelectric properties in nanoscale and nanostructured materials, Journal of Materials Chemistry., 2010, 21, 4037–4055.
    57. J. Baxter, Z. X. Bian, G. Chen, D. Danielson, M. S. Dresselhaus, A. G. Fedorov, et al., Nanoscale design to enable the revolution in renewable energy, Energy & Environmental Science., 2009, 2, 559–588.
    58. A. Shakouri, Annu. Rev. Mater. Res., 2011, 41, 399–431.
    59. J. L. Feldman, D. J. Singh, I. I. Mazin, D. Mandrus, & B. C. Sales, Lattice dynamics and reduced thermal conductivity of filled skutterudites. Phys. Rev.B., 2000, 61, R9209–R9212.
    60. J. R. Sootsman, D. Y. Chung and M. G. Kanatzidis, Angew. Chem., Int. Ed., 2009, 48, 8616–8639.
    61. G. Joshi, H. Lee, Y. Lan, X. Wang, G. Zhu, D. Wang, R. W. Gould, D. C. Cuff, M. Y. Tang, M. S. Dresselhaus, G. Chen and Z. Ren, Nano Lett., 2008, 8, 4670.
    62. Y. Ma, Q. Hao, B. Poudel, Y. C. Lan, B. Yu, D. Z. Wang, G. Chen, Z. F. Ren, Nano Lett., 2008, 8, 2580.
    63. J. F. Li, W. S. Liu, L. D. Zhao and M. Zhou, NPG Asia Mater., 2010, 2, 152–158.
    64. J. P. Heremans, M. S. Dresselhaus, L. E. Bell and D. T. Morelli, Nat. Nanotechnol., 2013, 8, 471–473.
    65. W. S. Liu, X. Yan, G. Chen and Z. Ren, Nano Energy, 2012, 1, 42–56.
    66. P. Pichanusakorn and P. Bandaru, Mater. Sci. Eng., R, 2010, 67, 19–63.
    67. H. Heinrich, K. Lischka, H. Sitter and M. Kriechbaum, Phys. Rev. Lett., 1975, 35, 1107–1110.
    68. H. Sitter, K. Lischka and H. Heinrich, Phys. Rev. B:, 1977, 16, 680–687.
    69. N. V. Kolomotes, M. N. Vinogradova and L. M. Sysoeva, Semiconductors, 1968, 1, 1020–1023.
    70. K. Biswas, J. Q. He, Q. C. Zhang, G. Y. Wang, C. Uher, Nat. Chem., 2011, 3, 160–166.
    71. L. D. Zhao, J. Q. He, S. Q. Hao, C. I. Wu, T. P. Hogan, C. Wolverton, V. P. Dravid and M. G. Kanatzidis, J. Am. Chem. Soc., 2012, 134, 16327–16336.
    72. L. D. Zhao, S. Hao, S. H. Lo, C. I. Wu, X. Zhou, Y. Lee, H. Li, K. Biswas, T. P. Hogan, C. Uher, C. Wolverton, V. P. Dravid and M. G. Kanatzidis, J. Am. Chem. Soc., 2013, 135, 7364–7370.
    73. L. D. Zhao, V. P. Dravid and M. G. Kanatzidis, Energy Environ. Sci., 2014, 7, 251-268.
    74. S. N Zhang, T. J. Zhu, S. H. Yang, C. Yu, X. B. Zhao, Acta Mater., 2010, 58, 4160-4169.
    75. H. Wang, J. F. Li, M. Zhou, T. Sui, Appl. Phys. Lett., 2008, 93, 202106.
    76. J. Xu, H. Li, B. Du, X. Tang, Q. Zhang, C. Uher, J. Mater. Chem., 2010, 20, 6138-6143.
    77. S. N. Zhang, T. J. Zhu, S. H. Yang, C. Yu, X. B. Zhao, J. Alloys Compd., 2010, 499, 215-220.
    78. J. D. Sugar, D. L. Medlin, J. Alloys Compd., 2009, 478, 75-82.
    79. H. A. Ma, T. C. Su, P. W. Zhu, J. G. Guo, X. P. Jia, J. Alloys Compd., 2008, 454 415-418.
    80. D. L. Medlin, J. D Sugar, Scripta Mater., 2010, 62, 379-382.
    81. B. L. Du, H. Li, X. F. Tang, J. Alloys Compd., 2011, 509, 2039-2043.
    82. B. Du, H. Li, J. Xu, X. Tang, C. Uher, Chem. Mater., 2010, 22, 5521-5527.
    83. D. T. Morelli, V. Jovovic, J. P. Heremans, Phys. Rev. Lett., 2008, 101, 035901.
    84. E. F. Hockings, Phys. Chem. Solids., 1959, 10, 341.
    85. R. W. Armstrong, J. W. Faust and W. A. Tiller, J. Appl. Phys., 1960, 31, 1954.
    86. K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. P. Hogan, E. K. Polychroniadis, M. G. Kanatzidis, Science., 2004, 303, 818-821.
    87. X. Z. Ke, C. F. Chen, J. H. Yang, L. J. Wu, J. Zhou, Q. Li, Y. M. Zhu, P. R. C. Kent, Phys. Rev. Lett., 2009, 103, 145502.
    88. B. A. Cook, M. J. Kramer, J. L. Harringa, M. K. Han, D.Y. Chung, M. G. Kanatzidis, Adv. Funct. Mater., 2009, 19, 1254.
    89. W. S. Liu, B. P. Zhang, and T. Kita, Appl. Phys. Lett., 2006, 88, 092104.
    90. B. A. Cook, M. J. Kramer, X. Wei, J. L. Harringa, and E. M. Levin, J. Appl. Phys., 2007, 101, 053715.
    91. J. R. Salvador, J. Yang, X. Shi, H. Wang, A. A. Wereszczak, J. Solid State Chem., 2009, 182, 2088-2095.
    92. K. Barraclough (Eds.), Advanced Crystal Growth, Prentice-Hall, Englewood Cliffs, NJ, 1986.
    93. Bridgman, Percy W. (1925). "Certain Physical Properties of Single Crystals of Tungsten, Antimony, Bismuth, Tellurium, Cadmium, Zinc, and Tin". Proceedings of the American Academy of Arts and Sciences 60 (6): 305–383
    94. C. Giacovazzo, H. L. Monaco, G. Artioli, D. Viterbo, G. Ferraris, G. Gilli, G. Zanotti and M.Catti, Fundamentals of Crystallography, Oxford University Press, Oxford and New York, 2002.
    95. P. F. Weller, Solid State Chemistry and Physics: an introduction, Marcel Dekker Inc., New York, 1973.
    96. W. L. Bragg, Proc. Camb. Phil. Soc., 1913, 17, 43-57.
    97. M. F. C. Ladd and R. A. Palmer, Structure Determination by X-ray Crystallography, Plenum Press, New York and London, 1993.
    98. L. E. Smart and E. A. Moore, Solid State Chemistry An Introduction, Taylor & Francis Group, Boca Raton, London, New York, Singapore, 2005.
    99. A. L. Patterson, Phys. Rev. Lett., 1934, 46, 372-376.
    100. J. J. Rousseau, Basic Crystallography, John Wiley & Sons, Chichester, 1998.
    101. G. M. Sheldrick, SHELXTL: Version 5.12, Siemens Analytical X-ray Systems, Madison, WI, 1995.
    102. H. M. Rietveld, J. Appl. Cryst., 1969, 2, 65-71.
    103. G. Malmros and J. O. Thomas, J. Appl. Cryst., 1977, 10, 7-11.
    104. L. B. McCusker, R. B. von Dreele, D. E. Cox, D. Louër and P. Scardi, J. Appl. Cryst., 1999,32, 36-50.
    105. W. J. Parker, R. J. Jenkins, C. P. Butler and G. L. Abbott, J. Appl. Phys., 1961, 32, 1679-1684.
    106. http://www.phys.sinica.edu.tw/~lowtemp/e-equipment.html.
    107. http://www.earth.sinica.edu.tw/~EPMA/en_index.html.
    108. V. Jovovic and J. P. Heremans, J. Electron. Mater., 2009, 38, 1504.
    109. M. Cutler, J. F. Leavy and R. L. Fitzpatrick, Phys. Rev., 1964, 133, A1143.
    110. J. M. O. Zide, D. Vashaee, Z. X. Bian, G. Zeng, J. E. Bowers, A. Shakouri and A. C. Gossard, Phys.Rev. B., 2006, 74, 205335.
    111. V. Jovovic and J. P. Heremans, Phys. Rev. B., 2008, 77, 245204.
    112. D. G. Cahill, S. K. Watson, R. O. Pohl, Phys. Rev. B., 1992, 46, 6131–6140.
    113. B. K. Min, B. S. Kim, I. H. Kim, J. K. Lee, M. H. Kim, M. W. Oh, S. D. Park, S. D. Park and H. W. Lee, J. Electron. Mater., 2011, No 3, 255-260.
    114. B. Abeles, Phys. Rev., 1963, 131, 1906.
    115. P.G. Klemens, Proc. Phys. Soc. London: Sect. A., 1955, 68, 1113–1128.
    116. J. Callaway, H.C. von Baeyer, Phys. Rev., 1960, 120, 1149–1154.
    117. L. Zhou, W. Li, J. Jiang, T. Zhang, Y. Li, G. Xu, P. Ci, J. Alloys Compd., 2010, 503, 464-467.
    118. K. Hoang, S. D. Mahanti, J. R. Salvador and M. G. Kanatzidis, Phys. Rev. Lett., 2007, 99, 156403.
    119. S. Y. Wang, W. J. Xie, H. Li and X. F. Tang, Intermetallics., 2011, 19, 1024.
    120. J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka and G. J. Snyder, Science., 2008, 321, 554.
    121. P. G. Klemens, Phys. Rev., 1960, 119, 507–509.
    122. J. Yang, G. P. Meisner and L. D. Chen, Appl. Phys.Lett., 2004, 85, 1140.
    123. H. J. Wu, S. W. Chen, T. Ikeda, G. J. Snyder, Acta Materialia., 2012, 60, 6144-6151.
    124. Y. Chen, M. D. Nielson, Y. B. Gao, T. J. Zhu, X. Zhao and J. P. Heremans, Adv. Energ. Mater., 2012, 2, 58-62
    125. T. Caillat, J.-P. Fleurial and A. Borshchevsky, J. Phys. Chem. Solid., 1997, 58, 1119–1125
    126. G. S. Nolas, J. W. Sharp and H. J. Goldsmid, in Thermoelectrics: Basic Principles and New Materials Developments, Springer-Verlag, Heidelberg, 2001.
    127. A. Zevalkink, E. S. Toberer, W. G. Zeier, E. Flage-Larsen and G. J. Snyder, Energy Environ. Sci., 2011, 4, 510–518.
    128. R. Mohanraman, R. Sankar, F. C. Chou, C. H. Lee and Y. Y Chen, J. Appl. Phys., 2013, 114, 163712.
    129. R. Mohanraman, R. Sankar, K. M. Boopathi, F. C. Chou, C. W. Chu, C. H. Lee and Y. Y Chen, J. Mater. Chem A., 2014, 2, 2839-2844.
    130. Y. Pei, J. F. Lensch, E. S. Toberer, D. L. Medlin, G. J Snyder, Adv. Funct. Mater., 2010, 21, 241.
    131. Y. Pei, N. A. Heinz, A. LaLonde, G. J. Snyder, Energy Environ. Sci., 2011, 4, 3640.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE