簡易檢索 / 詳目顯示

研究生: 蕭勝鴻
論文名稱: 多尾橢圓分佈下之最佳投資組合
Optimal portfolio allocation under Multi-tail elliptical distribution
指導教授: 周若珍
口試委員: 胡毓彬
韓傳祥
學位類別: 碩士
Master
系所名稱: 理學院 - 統計學研究所
Institute of Statistics
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 37
中文關鍵詞: 多尾橢圓分佈尾端函數最佳投資組合
外文關鍵詞: Multi tail elliptical distribution, tail function, optimal portfolio
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來的研究顯示,不同資產之收益分佈於尾端收斂的速度並不一致,多尾橢圓分佈可透過尾端函數來描述此現象。本論文中,我們探討服從多尾橢圓分佈的資產的最佳投資組合問題。我們亦建議一種能連結傳統橢圓分佈並於實際意義上有較好的解釋的特殊形式的之主成分尾端函數,並且提供估計此尾端函數的方法。最後以道瓊工業指數所含之28種資產數據為例,提出最佳投資組合。


    Recent studies show that the decreasing rate of tail varies from different asset returns. Multi tail elliptical distribution can describe this phenomenon through tail function. In this thesis, we discuss the optimal portfolio problem for the multi tail elliptical distributed assets. We also present a new type of principal component tail function which connects to the elliptical distribution with better interpretation. A procedure for estimating such tail function is provided. As an empirical study, the optimal portfolio is obtained from the data containing the daily log return of 28 assets from the Dow Jones Industrial Average.

    第1章 緒論與文獻回顧 第2章 橢圓分佈族及多尾橢圓分佈 2.1 橢圓分佈與尾端指數 2.2 多尾橢圓分佈 第3章 尾端函數與最佳投資組合問題 3.1 第二類型尾端函數 3.2 估計方法與模擬 3.3 最佳資產配置 第4章 實證分析 4.1 模型配適與分析 4.2 投資組合建構 第5章 結論與討論 附錄 A: 下資產最佳化問題 B : DJIA之參數估計 C : 直交轉換後之尾端函數 參考文獻

    Eberlein, E. and U. Keller.,1995. Hyperbolic distribution in finance. Bernoulli 1, 281–99.
    Eberlein, E., U. Keller and K. Prause., 1998. New insights into smile, mispricing, and value at risk: the hyperbolic model. Journal of Business 71, 371–406.
    Fama, E., 1963. Mandelbrot and the stable Paretian hypothesis. Journal of Business 36, 420-429.
    Fama, E., 1965a. The behavior of stock market prices. Journal of Business 38, 34-105.
    Fama, E., 1965b. Portfolio analysis in a stable Paretian market. Management Science 11, 404-419.
    Fang, K. T., S. Kotz and K. W. Ng (1990). Symmetric Multivariate and Related Distributions. London: Chapman and Hall.
    Frahm, G. (2004). Generalized elliptical distributions: theory and applications. Unpublished Ph.D. thesis, University of Cologne.
    Kotz, S. and S. Nadarajah.,2004. Multivariate t-Distributions and Their Applications. Cambridge:Cambridge University Press.
    Kring,S.,Rachev, S.T,Hochestotter, M,Fabozzi, F.J,Bianchi, M.L,. 2009. Multi-tail generalized elliptical distributions for asset returns. Econometrics Journal 12, 272-291.
    Loretan, M. and P. Phillips., 1994. Testing the covariance stationarity of heavy tailed time series. Journal of Empirical Finance 1, 211–48.
    Mandelbrot, B.,1963a. New methods in statistical economics. Journal of Political Economy 71, 421-440.
    Mandelbrot, B.,1963b. The variation of certain speculative prices. Journal of Business 26, 394-419.
    Mandelbrot, B.,1967. The variation of some other speculative prices. Journal of Business 40, 393-413.
    Mandelbrot, B., Taylor, H.M., 1967. On the distribution of stock price difference. Operations Research 15, 1057-1062.
    Markowitz, H.,1952. Portfolio selection. Journal of Finance 7, 77-91.
    Markowitz, H.,1959. Portfolio selection; Efficient Diversification of Investment. Wiley, New York.
    Markowitz, H.,1977.An algorithm for finding undominated portfolios.. In: Levy, H., Sarnat, M. (Eds), Financial Decision Making Making under Uncertainty. Academic Press, New York.
    Meerschaert, M.M. and H.-P. Scheffler 2001.Limit distribution for sum of independent random vector: Heavy tails in theory and practice. Wiley New York.
    Meerschaert, M.M. and H.-P. Scheffler 2003. Portfolio modeling with heavy tailed
    random vectors. Handbook of Heavy Tailed Distributions in Finance, Editor:
    S.T. Rachev Elsevier/North-Holland, pp. 595-640.
    Ortobelli., Huber.I., Rachev, S.T. Schwartz, E.S,2003. Portfolio choice theory with non-Gassian distributed returns. Handbook of Heavy Tailed Distributions in Finance, Editor:S.T. Rachev Elsevier/North-Holland, pp. 547-594.
    Rachev, S. T. and S. Mittnik., 2000. Stable Paretian Models in Finance. New York: John Wiley & Sons.
    Rachev, S., Martin, D., Racheva-Iotova, B., Stoyanov, S., 2007. Stable ETL optimal
    portfolios and extreme risk management. Forthcoming in Decisions in Banking and
    Finance.
    Samorodnitsky.G.,Taqqu, M., 1994. Stable Non-Gaussian Random Process. Chapman & Hall, New York.
    Tobin, J., 1958.Liquidity preference as behavior toward risk. Review of Economic Studies 25, 65-86.
    Tobin, J., 1965. The theory of portfolio selection. In: Hahn,F.H., Brechling, F.P.R. (Eds.), The Theory of Interest Rates. Macmillan, London.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE