研究生: |
陳韋儒 |
---|---|
論文名稱: |
根據電腦斷層掃描影像計算下泌尿道系統流場之研究 Computational fluid dynamics study of lower urinary tract system based on computer tomography images |
指導教授: | 林昭安 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 69 |
中文關鍵詞: | 電腦斷層掃描 、下泌尿道系統 、膀胱出口阻塞 、醫學影像 |
外文關鍵詞: | computer tomography image, lower urinary tract system, bladder outlet obstruction, medical image |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Bladder outlet obstruction (BOO) is a common cause of lower urinary tract symptoms (LUTS) in men. Urologists usually depend on International Continence Society (ICS) nomogram and experiences for diagnosis. However, this method requires invasive testing which is very uncomfortable and time consuming for patients. Besides, there exists equivocal zone by using ICS nomogram.
The objective of the present study is to investigate the feasibility of computed tomography based non-invasive technique to diagnose bladder outlet obstruction (BOO). Based on the rapid advances in noninvasive imaging technology, the images of targeted organs are acquired using computed tomography, where the three dimensional model of the lower urinary tract system (involving the bladder and urethra) are reconstructed. The reconstructed 3D models are then analyzed with computational fluid dynamic technique, where the predicted pressure drop is used as a replacement of the invasive pressure measurements. It was found that the predicted pressure drop has a good correlation with field measured Abrams-Griffiths number. Further, a functional nomograph (similar to ICS nomogram) is developed, where healthy man pressure drop is used as threshold to distinguish patients with and without BOO.
1. Abrams, P., Bruskewitz, R., De la Rosette J., et al. (1995). The diagnosis of bladder outlet obstruction. In Cockett, A. T. K., Khoury, S., Aso, Y., et al.(eds): Proceedings, the 3rd International Consultation on BPH. Geneva, World Health Organization, 299-367.
2. Abrams, P. (1997). Urodynamics, second edition. London: Springer.
3. Abrams PH, Griffiths D (1979). The assessment of prostatic obstruction from urodynamic measurements and from residual urine. Br J Urol, 51, 129-134.
4. Blaivas, J.G. (1990). Multi-channel urodynamics studies in men with benign prostatic hyperplasia. Urol Clin North Am, 17, 543-552.
5. Blake C. and Abrams P. (2004). Noninvasive techniques for the measurement of isovolumetric bladder pressure .JOURNAL OF UROLOGY, 171, 1, 12-19.
6. Brocklehurst J. C. (1993). Urinary incontinence in the community – analysis of a MORI poll. Br. Med. J., 306, 832-834.
7. Comiter, C. V., Sullivan, M. P., Schacterle, R. S., Yalla, S. V. (1996). Prediction of prostatic obstruction with a combination of isometric detrusor contraction pressure and maximum urinary flow rate. Urology, 48(5), 723-730.
8. El Tahry, S.H. 1983. k-ε汹equation for compressible reciprocating engine flows, AIAA, J. Energy, 7(4), 345–353.
9. Ger E. P. M. Van Venrooij, Mardy D. Eckhardt, and Tom A. Boon (2004). Noninvasive assessment of prostatic obstruction in elderly men with lower urinary tract prostatic hyperplasia. Urology, 63, 476-480.
10. Griffiths DJ, (1973). The mechanics of the urethra and of micturition. Br J Urol. 45, 497-507.
11. Griffiths DJ (1995). Basics of pressure-flow studies. World J Urol.13, 30-33.
12. Griffiths D, Hofner K, van Mastrigt R, et al. (1997). Standardisation of terminology in lower urinary tract function: pressure flow studies of voiding, urethral resistance and urethral obstruction. Neurourol Urodyn. 6, 1-18.
13. Gleason DM, Lattimer J (1962). The pressure-flow study: a method for measuring bladder neck resistance. J Urol, 87, 844-852.
14. Haylen, B. T., Parys, B. T., Anyaebunam, W. I., et al. (1990). Urine flow rates in male and female urodynamics patient compared with the Liverpool nomograms. Br Journal of Urology, 65, 483-487.
15. Issa, R.I. (1986). Solution of the implicitly discretised fluid flow equations by operator-splitting, J. Comp. Phys., 62, 40–65.
16. Issa, R.I., Gosman, A.D., and Watkins, A.P. (1986). The computation of compressible and incompressible recirculating flows by a non-iterative implicit scheme, J. Comp. Phys., 62, 66–82.
17. Issa, R.I., Ahmadi Befrui, B., Beshay, K., and Gosman, A.D. (1991). Solution of the implicitly discretised reacting flow equations by operator-splitting, J. Comp. Phys., 93, 388–410.
18. Johan J M Pel and Ron Van Mastright (2006). Development of a CFD urethral model to study flow-generated vortices under different conditions of prostatic obstruction, Physiol. Meas., 28, 13-23.
19. Kim, S.-E., and Choudhury, D. 1995. A near-wall treatment using wall functions sensitized to pressure gradient, ASME, FED, 217 (Separated and Complex Flows).
20. Launder, B. E. and Spalding, D. B. (1974). The Numerical Computation of Turbulent Flow. Computer Method in Applied Mechanics and Engineering, 3, 269-289.
21. Lecamwasam, H. S., Sullivan, M. P., Yalla, S. V. and Cravalho, E. G. (1999). The flow regimes and the pressure-flow relationship in the canine urethra”, Neurourology and Urodynamics, 18, 521-541.
22. Lim C. S. and Abrams P. (1995). The Abrams-Griffiths nomogram, World Journal of Urology, 13, 34-39
23. Liu, H., Iwase, H., Hayasaka, T., He, Y., Matsunaga, N., Shigetani, T. and Himeno, R. (2002). Image-based simulation of cardiovascular blood flow and its clinical application. The 9th national conference on computational fluid dynamics, 15-22.
24. L.P. McRae, M.R. Bottaccini, and D.M. Gleason (1995). Noninvasive quantitative method for measuring isovolumetric bladder pressure and urethral resistence in the male: I. experimental validation of the theory. Neurourology and Urodynamics, 14, 101-114.
25. McGuire, E. J. (1989). Urodynamic studies in prostatic obstruction. In Fitzpatrick, J. M., and Krane, R. J. (eds): The Prostate. New York: Churchill Livingstone, 103-109.
26. Nitti VW, (2005). ‘Pressure flow urodynamic studies: the gold standard for diagnosing bladder outlet obstruction’, Department of Urology, New York University School of Medicine, New York, NY, 7, 14-21.
27. Ozawa, H., Kumon, H., Yokoyama, T., Watanabe, T. and Chancellor, M. B. (1998). Develop of noninvasive velocity flow video urodynamics using Doppler sonography. PARTII: Clinical application in bladder outlet obstruction. Journal of Urology, 160, 1792-1796.
28. Ozawa, H., Chancellor, M. B., Ding, Y. Y., Nasu, Y., Yokoyama, T. and Kumon, H. (2000). Noninvasive urodynamic evaluation of bladder outlet obstruction using Doppler ultrasonography. Urology, 56(3), 408-412.
29. Ruge, J.W., and Stüben, K. (1986). ‘Algebraic Multigrid (AMG)’ in “Multigrid Methods” (Ed. S. McCormick), Frontiers in Applied Mathematics, SIAM, 5, Philadelphia.
30. S. J. Chia, C. T. Heng, S. P. Chan and K. T. Foo (2003). Correlation of intravesical prostatic protrusion with bladder outlet obstruction. BJU INTERNATIONAL, 91, 371-374.
31. Schäfer, W. (1983). Detrusor as the energy source of micturition. In Hinman, F. Jr, and Boyarsky, S. (eds): Benign Prostatic Hypertrophy. New York: Springer Verlag, 450-469.
32. Schafer W, (1983). The contribution of the bladder outlet to the relation between pressure and flow rate during micturition. In: Hinman, F Jr, Boyarsky, S, eds. Benign Prostatic Hypertrophy. New York, NY: Springer Verlag; 470-496.
33. Schafer W, (1985). Urethral resistance? Urodynamic concepts of physiological and pathological bladder outlet function during voiding. Neurourol Urodyn. 4,161-201.
34. Schafer W, (1990). Principles and clinical application of advanced urodynamic analysis of voiding function. Urol Clin North Am. 17,553-566.
35. Spangerg, A., Terio, H., Engberg, A. and Ask, P. (1989). Estimation of elastic properties in the urethral flow controlling zone by singnal analysis of urodynamic pressure/flow data. Med. and Biol.Eng and Computing, 27, 314-321.
36. Spangerg, A., Terio, H., Engberg, A. and Ask, P. (1989). Quantification of urethral function based on Griffiths’ model of flow through elastic tubes. Neurourology and Urodynamics, 8, 29-52.
37. Stüben, K., and Trottenberg, U. (1982). Multigrid methods: Fundamental algorithms, model problem analysis and applications, in “Lecture Notes in Mathematics”, Springer, 960, pp. 1-176.
38. Taylor, C. A. (2002). Computational fluid dynamics in cardiovascular surgery planning. The 9th national conference on computational fluid dynamics, 1-4.
39. Van den Vorst HA, Sonneveld P. (1990). CGSTAB, a more smoothly converging variant of CGS. Delft University of Technology , Technical Report , pp. 90-50.
40. Yamaguchi, T., Hayasaka, T., Mori, D., Hayashi, H., Yano, K., Mizuno, F. and Harazawa, M. (2002). Towards computational biomechanics cardiovascular medical practice. Proceedings of the Second International Conference on Computational Fluid Dynamics, 46-61.
41. Yang CH, Lin CA, Wang SJ, et al. (2007). Computer tomography based noninvasive urodynamics diagnosis method as a predicting tool of bladder outlet obstruction. JOURNAL OF UROLOGY, 4, 574-574.
42. 黃仁政(1999),計算流體力學運用於泌尿系統臨床檢查可行性之研究,國立清華大學碩士論文。
43. 楊子慶(2000),泌尿系統內部壓力分佈研究,國立清華大學碩士論文。
44. 李豐銘(2001),下泌尿道系統非侵入式量測方法之研究,國立清華大學碩士論文。
45. 楊承修(2002), “根據醫學影像處理計算下泌尿道系統流場之研究”, 國立清華大學碩士論文。
46. 黃慶祥(2003), “下泌尿道系統流場量測與模擬分析之研究”, 國立清華大學碩士論文。3
47. STAR-CD version 3.2 Methodology (First printed in July 2004).