簡易檢索 / 詳目顯示

研究生: 蔡豐任
Tsai, Feng-Ren
論文名稱: 叢集圖形平面化問題之改良啟發式演算法
Improved Heuristic for Planarization of Clustered Graph
指導教授: 潘雙洪
Poon, Sheung-Hung
口試委員: 林春成
黃世強
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊系統與應用研究所
Institute of Information Systems and Applications
論文出版年: 2014
畢業學年度: 103
語文別: 中文
論文頁數: 74
中文關鍵詞: 叢集圖形圖形平面化
外文關鍵詞: Clustered Graph, Planarization
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 叢集圖形平面化是藉由添加啞交叉點至叢集圖形的底層圖形,使其轉換成具備叢集平面性質的叢集圖形的一系列操作。平面化的啟發式演算法含兩階段:暫除邊而得到具平面性質的子圖,然後將暫除的邊經平面化操作再補回圖形。其中第二階段一般牽涉到在機件圖形上的路徑搜尋。衡量平面化演算法的準則為產生的啞交叉點個數。

    叢集圖形平面化的經典啟發式演算法將暫除邊補回圖形時保持叢集邊界圈。但構造叢集邊界圈會對每個叢集的外延邊的循環次序造成多餘限制,阻礙了潛在的良好嵌入以及其上所能找到的更好的解。

    本論文提出針對叢集圖形平面化問題的改良啟發式演算法。構造叢集邊界圈的步驟拆作構造叢集邊界點及叢集邊界邊兩部分,其中叢集邊界邊的存在會對叢集外延邊的循環次序造成多餘限制。因此本論文提出的改良啟發式演算法將構造叢集邊界邊的步驟延後到暫除邊補完之後才實際構造。在此之上,構造並擴充捷徑機件子圖至機件圖上,使得在此擴充機件圖上尋找最短加權路徑即等價於在眾多嵌入中尋找單邊補回的最佳解。

    本論文分別從理論及實驗兩方面檢驗此改良演算法。從理論角度驗證,此改良演算法中的單邊補回方法,對於叢集連通的叢集圖形,能夠解得其某類嵌入集下的單邊補回問題的最佳解。而從實驗角度驗證,此改良演算法確實勝過經典演算法,總和來看改良演算法所致生的啞交叉點個數縮減為經典演算法所致生的啞交叉點個數的 89.1% 。


    Planarization of clustered graph is a series of operations to transform the underlying graph by creation of degree four crossing dummies such that the result becomes a c-planar clustered graph. The heuristic for planarization consists of two stages: finding a subgraph by discarding some edges, and then reinsert discarded edges back through planarization operations. The edge reinsertion stage generally involves path finding on certain gadgets. The criteria of planarization is to minimize the number of incurred crossing dummies.

    The classic method for planarization of clustered graph deal with this problem by starting from a maximal c-planar sub-clustered graph and then repetitively doing single edge insertion while maintaining cluster boundary cycles. But the modeling of cluster boundary cycles put unnecessary constraint on the cyclic ordering of outgoing edges of each cluster, hence prohibit some potentially good embeddings in which better solution can be found.

    The thesis proposes an improved heuristic algorithm for planarization of clustered graph. In the thesis, the modeling of cluster boundary cycles breaks into modeling of boundary points and boundary edges, and the modeling of boundary edges are deferred after edge reinsertion stage has been finished. Moreover, shortcut gadgets are augmented to the gadget such that searching a shortest weighted path on the augmented gadget is effectively finding an optimal solution for single edge insertion amongst more embeddings at once.

    The proposed method is both theoretically and experimentally examined. Theoretically that the proposed method finds an optimal solution for single edge insertion among a certain type embedding set for a c-connected clustered graph. And experimentally that the proposed method does outperform the classic method in the sense that the overall average of incurred crossings is reduced to about 89.1% in the experiment.

    List of Figures 1 1. Introduction 3 2. Preliminaries and Related Works 9 2.1. Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2. Planarization of Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3. Planarization of Graph with variable embedding . . . . . . . . . . . . . . . . . . 16 2.4. Planarization of Clustered Graph . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3. The Proposed Method 21 3.1. Forming boundary cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2. Path finding on the gadget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.3. Creation of gadget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.4. Augmentation of shortcuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4. Experiment 53 4.1. Test Samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 4.2. Experiment Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4.3. Experiment Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 57 5. Conclusion and Future Work 65 A. Showcase 67 References 77

    [BDM02] Giuseppe Battista, Walter Didimo, and A. Marcandalli. Planarization of clustered
    graphs. In Petra Mutzel, Michael Jünger, and Sebastian Leipert, editors, Graph
    Drawing, volume 2265, pages 60–74. Springer Berlin Heidelberg, 2002.
    [BETT98] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G Tollis. Graph
    drawing: algorithms for the visualization of graphs. 1998.
    [BGL + 97] Giuseppe Di Battista, Ashim Garg, Giuseppe Liotta, Roberto Tamassia, Emanuele
    Tassinari, and Francesco Vargiu. An experimental comparison of four graph draw-
    ing algorithms. Computational Geometry, 7(5–6):303 – 325, 1997. 11th ACM
    Symposium on Computational Geometry.
    [BM04] John M. Boyer and Wendy J. Myrvold. On the cutting edge: Simplified o(n) pla-
    narity by edge addition. Journal of Graph Algorithms and Applications, 8(3):241–
    273, 2004.
    [BTT84] C. Batini, M. Talamo, and R. Tamassia. Computer aided layout of entity re-
    lationship diagrams. Journal of Systems and Software, 4(2–3):163 – 173, 1984.
    Entity-Relationship Approach to Databases and Related Software.
    [CDF + 08] Pier Francesco Cortese, Giuseppe Di Battista, Fabrizio Frati, Maurizio Patrignani,
    and Maurizio Pizzonia. C-planarity of c-connected clustered graphs. Journal of
    Graph Algorithms and Applications, 12(2):225–262, 2008.
    [CG12] Markus Chimani and Carsten Gutwenger. Advances in the planarization method:
    Effective multiple edge insertions. J. Graph Algorithms Appl., 16(3):729–757, 2012.
    [CGMW09] Markus Chimani, Carsten Gutwenger, Petra Mutzel, and Christian Wolf. Inserting
    a vertex into a planar graph. In Proceedings of the Twentieth Annual ACM-SIAM
    Symposium on Discrete Algorithms, SODA ’09, pages 375–383, Philadelphia, PA,
    USA, 2009. Society for Industrial and Applied Mathematics.
    [DBT96] G. Di Battista and R. Tamassia. On-line planarity testing. SIAM Journal on
    Computing, 25(5):956–997, 1996.
    [Dji95] HristoN. Djidjev. A linear algorithm for the maximal planar subgraph problem.
    In SelimG. Akl, Frank Dehne, Jörg-Rüdiger Sack, and Nicola Santoro, editors,
    Algorithms and Data Structures, volume 955 of Lecture Notes in Computer Science,
    pages 369–380. Springer Berlin Heidelberg, 1995.
    [FCE95] Qing-Wen Feng, RobertF. Cohen, and Peter Eades. Planarity for clustered graphs.
    In Paul Spirakis, editor, Algorithms — ESA ’95, volume 979, pages 213–226.
    Springer Berlin Heidelberg, 1995.
    [Fen97] Qingwen Feng. Algorithms for drawing clustered graphs, 1997.
    [GJ79] Michael R. Garey and David S. Johnson. Computers and Intractability: A Guide
    to the Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA,
    1979.
    77[GJ83] M. Garey and D. Johnson. Crossing number is np-complete. SIAM Journal on
    Algebraic Discrete Methods, 4(3):312–316, 1983.
    [GM01] Carsten Gutwenger and Petra Mutzel. A linear time implementation of spqr-trees.
    In Joe Marks, editor, Graph Drawing, volume 1984 of Lecture Notes in Computer
    Science, pages 77–90. Springer Berlin Heidelberg, 2001.
    [GM03] Carsten Gutwenger and Petra Mutzel. An experimental study of crossing mini-
    mization heuristics. In Graph Drawing, pages 13–24, 2003.
    [GMW05] Carsten Gutwenger, Petra Mutzel, and René Weiskircher. Inserting an edge into
    a planar graph. Algorithmica, 41(4):289–308, 2005.
    [Gut10] Carsten Gutwenger. Application of SPQR-trees in the planarization approach for
    drawing graphs. PhD thesis, 2010.
    [HT73] John Hopcroft and Robert Tarjan. Algorithm 447: Efficient algorithms for graph
    manipulation. Commun. ACM, 16(6):372–378, June 1973.
    [HT74] John Hopcroft and Robert Tarjan. Efficient planarity testing. J. ACM, 21(4):549–
    568, October 1974.
    [MGB + 98] Petra Mutzel, Carsten Gutwenger, Ralf Brockenauer, Sergej Fialko, Gunnar W.
    Klau, Michael Krüger, Thomas Ziegler, Stefan Näher, David Alberts, Dirk Ambras,
    Gunter Koch, Michael Jünger, Christoph Buchheim, and Sebastian Leipert. A
    library of algorithms for graph drawing. In Graph Drawing, pages 456–457, 1998.
    [MZ99] Petra Mutzel and Thomas Ziegler. The constrained crossing minimization prob-
    lem. In Jan Kratochvíyl, editor, Graph Drawing, volume 1731 of Lecture Notes in
    Computer Science, pages 175–185. Springer Berlin Heidelberg, 1999.
    [OGDF] O-G-D-F. The open graph drawing framework. http://www.ogdf.net .
    [Tam14] Roberto Tamassia, editor. Handbook of Graph Drawing and Visualization. CRC
    Press, 2014.
    [Whi32] Hassler Whitney. Non-separable and planar graphs. Transactions of the American
    Mathematical Society, 34(2):339–362, 1932.
    [WKWL99] Shih Wei-Kuan and Hsu Wen-Lian. A new planarity test. Theoretical Computer
    Science, 223(1–2):179 – 191, 1999.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE